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Abstract
Hydrothermal alteration is considered to increase the likelihood of dome or flank collapse by compromising stability. Under-
standing how such alteration influences rock properties, and providing independent metrics for alteration that can be used to 
estimate these parameters, is therefore important to better assess volcanic hazards and mitigate risk. We explore the possibil-
ity of using whole-rock δ18O and δD values and water contents, metrics that can potentially track alteration, to estimate the 
strength (compressive and tensile) and Young’s modulus (i.e. “stiffness”) of altered (acid-sulphate) volcanic rocks from La 
Soufrière de Guadeloupe (Eastern Caribbean). The δ18O values range from 5.8 to 13.2‰, δD values from − 151 to − 44‰, 
and water content from 0.3 to 5.1 wt%. We find that there is a good correlation between δ18O values and laboratory-measured 
strength and Young’s modulus, but that these parameters do not vary systematically with δD or water content (likely due 
to their pre-treatment at 200 °C). Empirical linear relationships that allow strength and Young’s modulus to be estimated 
using δ18O values are provided using our new data and published data for Merapi volcano (Indonesia). Our study highlights 
that δ18O values can be used to estimate the strength and Young’s modulus of volcanic rocks, and could therefore be used 
to provide parameters for volcano stability modelling. One advantage of this technique is that δ18O only requires a small 
amount of material, and can therefore provide rock property estimates in scenarios where material is limited, such as borehole 
cuttings or when sampling large blocks is impracticable.

Keywords La Soufrière de Guadeloupe · Merapi · Porosity · Uniaxial compressive strength · Tensile strength · Young’s 
modulus · Whole-rock oxygen isotope ratio

Introduction 

Geophysical techniques have revealed large subsurface 
hydrothermal systems within active volcanoes worldwide 
(Aizawa et al., 2009; Finizola et al., 2010; Troll et al., 2012; 
Rosas-Carbajal et al., 2016; Byrdina et al., 2017, 2018; 
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Ghorbani et al., 2018; Finn et al., 2018, 2022; Ahmed et al., 
2018; Tseng et al., 2020; Kereszturi et al., 2021). The hydro-
thermal fluids circulating within these systems can physi-
cally and chemically alter the rocks (Browne, 1978), which 
is thought to increase the likelihood of potentially devastat-
ing dome or partial edifice flank collapse by compromising 
their stability (Day, 1996; van Wyk de Vries et al., 2000; 
Reid et al., 2001; Voight et al., 2002; Reid, 2004; Cecchi 
et al., 2004; Salaün et al., 2011; Ball et al., 2015, 2018; 
Rosas-Carbajal et al., 2016; Mordensky et al., 2019, 2022; 
Heap et al., 2021a, b; Harnett and Heap, 2021; Darmawan 
et al., 2022). Dome or edifice collapse can suddenly decom-
press pressurised hydrothermal systems or gas-rich magma 
present at shallow depth hence triggering the formation of 
devastating highly mobile high-energy pyroclastic density 
currents (blasts) exemplified by the classic 1980 eruption 
of Mount St. Helens (USA) as well as other eruptions of 
varying magnitudes (Lipman and Mullineaux, 1981; Voight 
et al., 1981; Hoblitt et al., 1981; Sparks et al., 2002; Voight 
et al., 2002; Boudon et al., 2005; Belousov et al., 2007; 
Lube et al., 2014; Komorowski et al., 2013). As a result, the 
monitoring of hydrothermal alteration at active volcanoes, 
and understanding how alteration influences rock physical 
and mechanical properties, are important to better assess 
volcanic hazards and mitigate risk.

Previous experimental studies have shown that hydro-
thermal alteration can decrease (del Potro and Hürlimann, 
2009; Frolova et al., 2014; Wyering et al., 2014; Mayer 
et al., 2016; Farquharson et al., 2019; Heap et al., 2020a, 
2021a, 2022a; Darmawan et al., 2022) or increase (Mar-
moni et al., 2017; Heap et al., 2020a, b, 2021b) the strength 
and Young’s modulus of volcanic rocks. Whether altera-
tion decreases or increases strength or Young’s modulus is 
thought to depend on (1) whether the alteration increases or 
decreases the porosity of the rock, a factor known to exert a 
first-order control on the strength and Young’s modulus of 
volcanic rocks and (2) whether the alteration minerals are 
weaker/softer or stronger/stiffer than the primary mineral 
assemblage (Heap et al., 2020a; Heap and Violay, 2021; 
Darmawan et al., 2022). Heap et al. (2021b) recently sug-
gested that both porosity-increasing and porosity-decreasing 
alteration could jeopardise volcano stability. These authors 
argued that porosity-increasing alteration affects volcano 
stability by reducing rock strength and stiffness, whereas 
porosity-decreasing alteration reduces permeability and 
increases pore fluid pressure (Heap et al., 2021b).

A step change in volcano hazard monitoring is possible 
if rock physical and mechanical properties can be accurately 
estimated using an independent metric that quantifies altera-
tion. Recently, Heap et al. (2021a, 2022a) showed that the 
strength (compressive and tensile) and Young’s modulus 
of variably altered rocks from La Soufrière de Guadeloupe 
(Eastern Caribbean) can be estimated using the amount of 

alteration minerals in wt%, quantified using X-ray powder 
diffraction (XRPD) data. Using Mt. Ruapehu (New Zea-
land) as a case study, Schaefer et al. (2021) showed that it 
is possible to estimate the physical and mechanical proper-
ties of volcanic rocks using rapid, non-invasive reflectance 
spectroscopy measurements. More recently, Darmawan 
et al. (2022) found that the compressive strength of vari-
ably altered rocks from Merapi volcano (Indonesia) can be 
estimated using whole-rock δ18O values.

Whole-rock δ18O values can serve as an indicator for 
alteration because hydrothermal processes often entail an 
exchange of oxygen isotopes between solid igneous min-
eral phases and circulating fluids, or the formation of new 
minerals such as clay minerals or sulphates (Taylor, 1974; 
Hansteen and Troll, 2003; Donoghue et al., 2008; Berg et al., 
2018). We highlight that magmatic variations in δ18O values 
are typically small and pristine igneous rocks usually have 
δ18O ratios between 5 and 8‰ (Taylor 1974; Bindeman, 
2008; Deegan et al., 2021). Indeed, variations due to closed-
system fractional crystallisation are usually < 1‰ (Binde-
man, 2008). Whole-rock δ18O values generally increase in 
volcanic rocks as a function of relatively low temperature 
hydrothermal alteration (≤ 250 °C), whereas higher tempera-
tures (≥ 400 °C) or isotopically very light meteoric waters 
usually tend to decrease the δ18O of the mineral assemblage 
(Taylor, 1974; Rose et al., 1994; Donoghue et al., 2010; Dar-
mawan et al., 2022). Here, we further explore the relation-
ship between whole-rock δ18O values, as well as δD values 
and water contents, and the strength (compressive and ten-
sile) and Young’s modulus of hydrothermally altered vol-
canic rocks. The goal of this contribution is to test whether 
isotopic compositions and water contents of hydrothermally 
altered (acid-sulphate) volcanic rocks can be used to esti-
mate their physical and mechanical properties.

Materials and methods

A suite of 19 variably altered rocks from La Soufrière de 
Guadeloupe, an active andesitic stratovolcano located on 
the French island of Guadeloupe in the Eastern Caribbean 
(Komorowski et al., 2005; Moretti et al., 2020), were used 
for this study (sampling locations are shown in Fig. 1).

Volcanic unrest at La Soufrière de Guadeloupe has 
increased since its reawakening in 1992. This unrest is mani-
fest as the expansion of the hot outgassing area at the top 
of the current lava dome (which formed in CE 1530), the 
appearance of steam-dominated fumaroles and acid chloride-
sulphate springs, an increase in summit and flank displace-
ment rates, an increase in the heat output from the dome, 
an abundance of shallow seismicity, and, in April 2018, the 
largest felt tectonic earthquake since the last eruption in 
1976–1977 (Brombach et al., 2000; Villemant et al., 2005, 



Bulletin of Volcanology           (2022) 84:74  

1 3

Page 3 of 14    74 

2014; Moretti et al., 2020; Jessop et al., 2021; Heap et al., 
2021a; Moune et al., 2022). The link between the stability 
of the volcano and a combination of hydrothermal altera-
tion resulting from hydrothermal circulation and chemical 
weathering due to the tropical environment has been under-
scored in several contributions (Komorowski et al., 2005; Le 
Friant et al., 2006; Salaün et al., 2011; Rosas-Carbajal et al., 
2016; Peruzzetto et al., 2019; Heap et al., 2021a; Moretti 
et al., 2021; Metcalfe et al., 2021; Moune et al., 2022). As 
a result, La Soufrière de Guadeloupe represents an ideal 
natural laboratory to study the influence of hydrothermal 
alteration on rock physical and mechanical properties and 
volcano stability.

Indeed, La Soufrière of Guadeloupe is characterised by 
an exceptional recurrence of partial edifice collapse with 
at least nine flank collapses that have occurred in the last 
9150 years, the last of which occurred during the 1530 CE 
eruption (Komorowski et al., 2005, 2012; Boudon et al., 

2007; Legendre, 2012; Peruzzetto et al., 2019). Evidence 
from the geological record indicates that the frequency of 
partial edifice collapse in the last 9150 years has increased 
compared to older eruptive episodes of the Grande Décou-
verte volcanic complex, although the collapse volume has 
decreased. Finally, there is a high probability that edifice col-
lapse will trigger laterally-directed explosions (between two 
and five of the eight edifice collapses in the last 8500 years 
generated laterally-directed blasts) (Komorowski et  al., 
2005, 2012; Boudon et al., 2007; Legendre, 2012; Peruzzetto 
et al., 2019).

All of the 19 blocks analysed in this study are sourced 
from either coherent lava blocks or coherent lavas (i.e. we 
did not collect blocks of, for example, breccia). Of the 19 
blocks collected, nine were collected from a collapse scar to 
the northeast of dome summit (blocks H2A, H2B, H3, H4A, 
H5A, H6, H25, H29, and H30). Five blocks were collected 
from the dome summit: four blocks were collected from the 
lava spines that protrude the dome (two blocks from Cratère 
Sud Central, H19 and H20, and two blocks from an adjacent 
site, H21 and H22), and one block was collected from the 
wall of the Lacroix Supérieur outgassing fracture on the lava 
dome (H18). A block was collected to the southwest of dome 
summit from a collapse scar into a highly fractured lava that 
forms the core of a paleo-collapse mega-block of the former 
volcanic edifice (WP1285). Blocks were also collected from 
the West wall of the fault “Faille 30 août” on the lava dome 
(H14 and H15), and from a thick lava adjacent to the Galion 
waterfall not associated with the CE 1530 dome (H32). The 
final block, a volcanic non-juvenile bomb from the dome 
that was ejected during the 1976–1977 explosive eruption 
(Komorowski et al., 2005), was taken from the roof of a 
small disused thermal bathhouse to the South of the dome 
summit (WP1317).

These rocks, previously described by Heap et al. (2021a, 
2022a, b), are andesites characterised by a porphyritic 
texture comprising magmatic phenocrysts of dominantly 
plagioclase and pyroxene (orthopyroxene and clinopyrox-
ene) within a microcrystalline groundmass. The mineral 
assemblage present in each block was identified by a com-
bination of optical microscopy, Raman spectroscopy, and 
X-ray powder diffraction (XRPD), and quantitative phase 
analysis was performed using the XRPD data and Rietveld 
program BGMN (Bergmann et al., 1998) (for more details 
see Heap et al., 2021a, 2022a, b). The XRPD data show 
that all of the rocks contain variable quantities of second-
ary (alteration) minerals: kaolinite, alunite or natro-alunite, 
silica polymorphs (quartz, cristobalite, tridymite, and opal-
A), hematite, pyrite, gypsum, and talc (Heap et al. 2021a, 
2022a, b; Table 1). The predominant hydrous alteration 
phases are kaolinite, natro-alunite, and opal-A in these mate-
rials (Table 1) suggesting fluid-rock interaction with acidic 
sulphate-chloride-rich fluids at relatively low temperatures 
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Fig. 1  Google Earth image (Google Maxar Technologies CNES/Air-
bus) of La Soufrière de Guadeloupe (Eastern Caribbean) showing 
the sampling locations for the 19 rock blocks collected for this study 
(see text for details). Whole-rock δ18O values, measured in this study 
(Table 2) are given next to the sampling location. Inset shows a map 
of Guadeloupe in which the location of La Soufrière de Guadeloupe 
is indicated by a red triangle 
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(< 150–200 °C) (Inoue, 1995; Zimbelman et al., 2005; Scher 
et al., 2013; Fulignati, 2020; Heap et al., 2021a). Indeed, 
these rocks do not contain smectite, which is not stable in 
highly acidic (low pH) environments. High-temperature 
acidic alteration minerals, such a pyrophyllite, dickite, dia-
spore, zunyite, or topaz, are notably absent, and talc was 
observed in only one sample (H22) in relatively low amounts 
(Table 1). The alteration intensity of the 19 blocks from La 
Soufrière de Guadeloupe has been quantified in previous 
contributions by the weight percentage (wt%) of secondary 
(i.e. alteration) minerals (Heap et al., 2021a, 2022a, b) and 
these data are available in Table 2.

In this contribution, we relate new whole-rock oxy-
gen and hydrogen isotope ratio data, and  H2O concen-
trations, with previously published data for the physical 
and mechanical properties of rocks from La Soufrière de 
Guadeloupe. The uniaxial compressive strength (UCS), 
indirect tensile strength (ITS), and Young’s modulus val-
ues for multiple cylindrical samples prepared from the 
blocks collected from La Soufrière de Guadeloupe were 
published in previous contributions by Heap et al. (2021a, 
2022a). UCS was measured on oven-dry cylindrical sam-
ples in a uniaxial load frame using a constant axial strain 
rate of  10–5  s–1 (Heap et al., 2021a). Young’s modulus, an 
elastic constant that describes the “stiffness” of a material, 
was then calculated from the pseudo-linear elastic portion 
of the resultant uniaxial stress–strain curves (Heap et al., 
2021a). ITS was measured on oven-dry discs, deformed 
diametrically in compression using a uniaxial load frame 
and a constant displacement rate of 0.025 mm.  s–1 (Heap 
et al., 2022a). UCS (and therefore Young’s modulus) and 

ITS were measured at ambient laboratory pressure and 
temperature. These studies concluded that hydrothermal 
alteration, associated with mineral dissolution, weak 
secondary minerals (such as clays), and an increase in 
microstructural heterogeneity, resulted in a reduction in 
compressive strength (Heap et al., 2021a), tensile strength 
(Heap et al., 2022a), and Young’s modulus (Heap et al., 
2021a).

Offcuts from the 19 blocks were crushed and powdered 
by hand, to a grain size of <  < 1 mm, using a ceramic pestle 
and mortar. The whole-rock oxygen isotope ratios of these 
samples were measured at the University of Cape Town 
(South Africa) using a Thermo DeltaXP mass spectrom-
eter (data unique to this study). Aliquots of ~ 10 mg of the 
whole rock powders were dried overnight at 50 °C and then 
under vacuum in nickel reaction vessels, then reacted with 
30 kPa of  CIF3 for ~ 4 h to extract the oxygen from sili-
cates (Borthwick and Harmon, 1982). The extracted oxy-
gen was then converted to  CO2 by passing it over a high-
temperature platinised carbon rod. For full analytical details 
see Vennemann and Smith (1990) and Harris and Vogeli 
(2010). Unknowns were run with duplicates of the internal 
quartz standard (MQ), which was used to calibrate the raw 
data to the SMOW (Standard Mean Ocean Water) scale, 
using a δ18O value of 10.1 for MQ (calibrated against NBS-
28). The results are reported in standard δ-notation, where 
δ =  (Rsample/Rstandard − 1) × 1000,  Rsample is 18O/16O in the 
sample, and  Rstandard is 18O/16O relative to SMOW (Gonfi-
antini, 1978). The analytical reproducibility (assumed here 
to be similar to the error) is estimated as ± 0.2‰ (2 sigma), 
based on long-term repeated analysis of MQ.

Table 1  Mineral contents of the 19 rock blocks from La Soufrière de 
Guadeloupe measured by X-ray powder diffraction. Values in wt%. 
Asterisk denotes a secondary mineral (i.e. alteration mineral). Data 

for H30 and H32 were published in Heap et  al. (2022b). All other 
data were published in Heap et al. (2021a). The relative errors in the 
quantification are in the order of 5–10% 

Mineral H2A H2B H3 H4A H5A H6 H14 H15 H18 H19 H20 H21 H22 H25 H29 H30 H32 WP1285 WP1317

Plagioclase 56.7 12.3 46.6 23.3 41.3 30.0 60.7 22.5 61.2 22.0 28.7 24.2 59.5 38.7 62.4 8.9 64.4 64.7 61.6
Clinopyroxene 8.7 3.4 5.6 4.9 5.2 6.4 6.3 7.3 8.4 5.0 8.9 12.4 8.9 5.3 7.8 2.5 9.5 5.2 5.9
Orthopyroxene 10.8 9.5 11.8 11.8 11.1 10.8 8.6 9.2 12.2 10.2 15.0 19.3 13.6 10.2 11.2 3.3 15.1 13.2 15.6
(Ti-) Magnetite 0.7 - 0.8 - - - 0.8 - 2.9 - 2.4 3.1 0.8 - 2.7 4.9 3.5 0.7
Quartz* 1.0 0.5 0.6 0.6 0.5 0.5 1.7 0.7 0.7 1.7 0.3 0.2 0.6 0.3 0.4 0.9 0.3 0.2 0.7
Cristobalite* 11.3 12.8 10.6 11.8 13.0 11.1 13.5 10.2 11.7 9.5 11.4 11.7 10.6 9.8 12.4 9 5.7 - -
Tridymite* - - - - - - - 0.7 - - - - - - - 13.2 13.2
Hematite* - - - - - - 3.4 - 2.8 2.4 - - - - 3.1 4.3 - -
Pyrite* 3.5 - 3.8 2.3 - - - - - - - 0.4 3.1 0.6 - - -
Alunite* - - - - - - - - - - - - - - - - 2.4
Na-Alunite* 1.4 1.6 2.8 1.3 5.4 5.1 5.1 15.0 - 14.2 0.5 0.5 - 9.8 - 25.6 - -
Gypsum* - - - 0.7 - - - - - - 0.8 1.2 - - - - -
Kaolinite* 6 59.7 17.4 43.3 23.5 36.0  < 1 34.3 - 2.0 2.0 2.0  < 1 25.3 - 35.6 - -
Talc* - - - - - - - - - - - - 2.9 - - - -
Opal-A* - - - - - - - - - 33 30 25 - - - 10 - -
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Hydrogen isotopes and water contents of the same 
powdered separates were determined using the method of 
Vennemann and O’Neil (1993). Samples were first melted 
in quartz glass tubes using a propane torch. The raw data 
were normalised to SMOW, and corrected for compression, 
using the water standards RMW (δD =  − 131.4‰) and 
CTMP2010 (δD =  − 7.4‰) with the in-house Serina kaolin-
ite standard analysed with the unknowns (Serina bulk kao-
linite, δD =  − 57‰,  H2O = 12.4 wt%; Harris et al., 1999). 
The measured δD values of the standard gave an average of 
–59.5 ± 3.6‰ (2σ, n = 3) after corrections to the raw data. 
All data were adjusted to the accepted Serina kaolinite value. 
Water abundances (as  H2O+) were measured from the volt-
age on the mass 2 collector of the mass spectrometer. This 
was calibrated against measured volumes of standard waters 
analysed alongside the unknowns. The measured water con-
tent of Serina kaolinite gave 12.4 wt% (± 0.5 wt% 2σ, n = 3) 
(pure kaolinite has an expected water content of 13.95 wt%).

We compare our new data with those for Merapi vol-
cano, collected using the same equipment and techniques 
described above. For the samples from Merapi volcano, the 
compressive and tensile strength data were published in Dar-
mawan et al. (2022) and Heap et al. (2022a), respectively, 
the alteration data (the wt% of secondary minerals, mostly 

sulphates) were published in Heap et al. (2019, 2022a), and 
the δ18O values were published in Darmawan et al. (2022). 
We have calculated the Young’s modulus for the experiments 
presented in Darmawan et al. (2022) using the pseudo-linear 
elastic portion of the uniaxial stress–strain curves (these data 
were not presented in Darmawan et al., 2022).

Results

We find that δ18O values vary from 5.8 to 13.2‰, that δD 
values vary from − 151 to − 44‰, and that water contents 
range from 0.3 to 5.1 wt% for our samples from La Soufrière 
de Guadeloupe (Table 2). The δ18O values, δD values, and 
water content data are plotted in Fig. 2 as a function of sec-
ondary alteration mineral content in wt% (Table 2), a met-
ric used in previous studies of these materials (Heap et al., 
2021a, 2022a, b). Additionally, we labelled samples with 
a high content of sulphates (≥ 2 wt% mostly natro-alunite, 
rarely alunite; Table 1) and opal-A (≥ 10 wt%; Table 1).

Although there is scatter in the data, the δ18O values 
positively correlate with the wt% of secondary minerals 
(Fig. 2a). We note that the two samples rich in opal-A (H20 
and H21) plot slightly above the trend delineated by the 

Table 2  The weight percentage 
of secondary minerals (data 
from Heap et al., 2021a, 
2022a, b), whole-rock δ18O 
values, whole-rock δD values, 
and water content  (H2O +) 
for rocks from La Soufrière 
de Guadeloupe (Eastern 
Caribbean) and Merapi 
volcano (Indonesia; data 
from Darmawan et al., 2022; 
Heap et al., 2019, 2022a). The 
sampling locations for the 
blocks from La Soufrière de 
Guadeloupe are shown in Fig. 1. 
NA not analysed

Volcano Block Weight percentage of 
secondary minerals

δ18O (‰) δD (‰) H2O + (wt%)

La Soufrière H2A 23 9.3 –86 1.1
La Soufrière H2B 75 12.5 –71 3.3
La Soufrière H3 35 8.1 –73 1.9
La Soufrière H4A 60 10.0 –90 1.7
La Soufrière H5A 42 10.5 –78 1.9
La Soufrière H6 53 9.4 –64 4.4
La Soufrière H14 24 7.1 –84 0.8
La Soufrière H15 61 9.7 –50 5.1
La Soufrière H18 15 7.3 –106 0.5
La Soufrière H19 63 11.7 –44 4.4
La Soufrière H20 45 13.2 –89 1.6
La Soufrière H21 41 12.9 –114 0.7
La Soufrière H22 17 5.8 –91 0.3
La Soufrière H25 46 10.5 –151 0.3
La Soufrière H29 16 7.0 –114 0.4
La Soufrière H30 85 11.1 –101 0.5
La Soufrière H32 6 6.5 –87 1.6
La Soufrière WP1285 13 8.0 –95 0.5
La Soufrière WP1317 16 8.7 –47 4.7
Merapi MU 8 7.7 NA NA
Merapi MSA1 33 12.4 NA NA
Merapi MSA2 29 8.4 NA NA
Merapi MHA1 45 10.4 NA NA
Merapi MHA2 62 12.0 NA NA
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other data (Fig. 2a). In contrast, no simple correlation is 
observed for the δD values or the water contents as a func-
tion of increasing wt% of secondary minerals (Fig. 2b and 
c, respectively). We highlight that samples with δD values 
much higher or lower than the other samples are typically 
samples with a high sulphate content (Fig. 2b). To some 
extent, this observation also applies to the water content data 
(Fig. 2c).

Figure 3 shows the uniaxial compressive strength, tensile 
strength, and Young’s modulus for samples from La Sou-
frière de Guadeloupe as a function of δ18O value, δD value, 
and water content. All these data are provided in an Excel® 
spreadsheet that accompanies this contribution as Supple-
mentary Information. The data of Fig. 3 show that strength 
(uniaxial and tensile) and Young’s modulus decrease as a 
function of increasing δ18O (Fig. 3a, d, and g), but it is more 
difficult to discern singular trends in the δD and water con-
tent data (Fig. 3b, c, e, f, h, and i).

Discussion

Our data show that the δ18O values of variably altered 
rocks from La Soufrière de Guadeloupe increase as a 
function of increasing alteration (Fig. 2a), as expected 
for low temperature hydrothermal alteration (≤ 250 °C) 
(Taylor, 1974; Rose et al., 1994; Donoghue et al., 2010; 
Darmawan et al., 2022). The dominance of kaolinite, very 
fine-grained natro-alunite, and amorphous silica, and 
the absence of smectite (Table 1), suggests alteration at 
temperatures below 150–200 °C in a steam-heated acid 
sulphate alteration environment (Zimbelman et al., 2005; 
Rye, 2005). The least altered samples have stable oxygen 
isotope compositions (5.8 to 7.3‰) similar to unaltered 
andesites from La Soufrière de Guadeloupe and other 
volcanoes in the Eastern Caribbean (Davidson, 1985; 
Davidson and Harmon, 1989; Van Soest et al., 2002). The 
highest values of about 12 ± 1‰, in turn, are recorded for 
the opal-dominated altered rocks. This is consistent with 
the larger oxygen isotope fractionation between amor-
phous silica and water (Kita et al., 1985) compared to 
alunite-water (Stoffregen et al., 1994) and kaolinite-water 
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(Sheppard and Gilg, 1996). The observed positive cor-
relation between δ18O values and percentage of alteration 
minerals in our analysed suite can thus be interpreted as a 
mixing line between primary igneous isotope signatures 
and secondary alteration phases. The scatter in the data 
can be explained by (1) the diversity of alteration phases 
with their distinct oxygen isotope fractionation factors 
with water, (2) potential temperature variations, (3) vari-
able isotope compositions of the involved fluids, and (4) 
the location and the type of processes involved in the alter-
ation (e.g. alteration within the host-rock or deep-seated 
regions of the dome by low temperature steam circulation 
of hydrothermal fluids in the roots of surficial fumaroles 

versus surficial alteration within a steaming and cooling 
dome following emplacement).

In contrast to the δ18O values, no simple correlation is 
observable for the δD values or water contents as a function 
of increasing wt% of secondary minerals (Fig. 2b and c, 
respectively). This result is surprising due to the very minor 
amount of primary hydrogen in these rocks, and the fact 
that the dominant hydrous alteration phases (alunite group 
minerals, kaolinite) have similar nominal water contents. 
Based on the spurious data for samples containing sulphates 
and/or opal-A (Fig. 2b and c), we suspect that the pre-treat-
ment procedure (heating to 200 °C in vacuum) probably 
led to significant water loss in the amorphous silica phase 
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Fig. 3  Uniaxial compressive strength as a function of δ18O value (a), 
δD value (b), and water content (c) for rocks from La Soufrière de 
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(compressive and tensile) and Young’s modulus data are taken from 
Heap et  al. (2021a, 2022a). Uniaxial compressive strength, tensile 
strength, and Young’s modulus were measured on multiple core 
samples prepared from each block, which is characterised by a sin-
gle δ18O value, δD value, and water content. Experimental errors 
are within the size of the symbols. All these data are provided in an 
Excel® spreadsheet that accompanies this contribution as Supple-
mentary Information
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(Brandriss et al., 1998; Martin and Gailliou, 2018) and that 
future studies should seek alternative methods to measure 
similar samples. Indeed, if we consider only the samples 
that contain minor or no sulphates and opal-A (the black 
symbols in Fig. 2), we observe positive correlations between 
the δD values and water contents as a function of increasing 
wt% of secondary minerals (Fig. 2b and 2c, respectively). 
This may suggest that our applied extraction technique for 
hydrogen isotope analysis of (Na-)alunite-rich samples has 
released sulphur-bearing volatiles that reacted with the dehy-
droxylation water leading to unreliable water contents and, 
most probably, hydrogen isotope data (see Rye et al., 1992). 
Furthermore, for stable hydrogen isotopes, no simple cor-
relation with the percentage of secondary alteration should 
be expected, as no igneous hydrous minerals were observed 
even in the least altered samples and the hydrogen isotope 
composition of the altered rocks will depend on the min-
eral type, temperature, and water isotope composition rather 
than simply on the wt% of secondary phases. We further 
note that the hydrogen isotope compositions of the steam-
heated acid chloride-sulphate waters will be influenced by 
recurrent evaporation and condensation processes and thus 
may be quite variable (Berg et al., 2018), including posi-
tive δ18O-δD pairs, as also observed for other volcanoes in 
the Eastern Caribbean (Chiodini et al., 1996; Joseph et al., 
2011). Furthermore, the D/H fractionation factors between 
some of the dominant hydrous phases and water are either 
less well constrained (e.g. alunite; Stoffregen et al. 1994) or 
even unknown (e.g. amorphous silica).

Although there are some outliers, Figs. 3a, d, and g show 
that the uniaxial compressive strength, tensile strength, and 
Young’s modulus of variably altered rocks from La Soufrière 
de Guadeloupe and Merapi volcano decrease as a function 
of increasing δ18O value. Therefore, strength and Young’s 
modulus are decreasing as a function of increasing altera-
tion, as discussed in Heap et al. (2021a) and Darmawan et al. 
(2022). However, we find little to no correlation between 
strength and Young’s modulus and the δD value (Fig. 3b, e, 
and h) or water content (Fig. 3c, f, and i), likely due to the 
pre-treatment of the samples at 200 °C. As noted above, the 
δD values are not related to the wt% of secondary alteration 
phases, and thus alteration intensity, and the measured water 
contents depend on the alteration mineral type. Therefore, 
we will focus here on using δ18O as a proxy for strength and 
Young’s modulus. Although we focus here on δ18O only, 
we do not rule out the possibility of using δD and/or water 
contents to predict rock properties in the future, as long as 
alternate laboratory methods are used (those that avoid pre-
treating the samples at 200 °C, but can remove extraneous 
absorbed water).

Figures 4a, b, and c show uniaxial compressive strength, 
tensile strength, and Young’s modulus, respectively, as a 
function of δ18O. The outliers in these data, shown as grey 

circles in Fig. 4, include samples from blocks H14, H29, 
and H32. Blocks H14 and H29 contained mesoscale frac-
tures, which could explain their low strength and Young’s 
modulus (Heap et al., 2021a, 2022a). Block H32, which is 
much stronger than the other blocks (Fig. 4), was collected 
from an older (K–Ar age 0.079 ± 0.003 Ma; Carlut and 
Quidelleur, 2000), low-porosity, and very thick lava adja-
cent to the Galion waterfall (Fig. 1). Therefore, the altera-
tion history of this block differs from the other blocks 
collected on, within, or adjacent to, the present-day dome 
that was emplaced during the 1530 CE eruption nearly 
500 years ago (Fig. 1). Excluding these outliers, we pro-
vide best-fit linear functions to the entire dataset (La Sou-
frière de Guadeloupe and Merapi volcano) in Fig. 4. Uni-
axial compressive strength, �

c
 , indirect tensile strength, �

t
 , 

and Young’s modulus, E , can therefore be estimated using 
the following empirical equations (where strength is in 
MPa, Young’s modulus in GPa, and δ18O in ‰):

Estimates of the strength (compressive and tensile) 
and Young’s modulus of volcanic rocks are required in a 
range of laboratory- and large-scale modelling designed to 
understand, respectively, the mechanical behaviour of vol-
canic rocks and the stability of volcanic flanks and domes 
(Watters et al., 2000; Okubo, 2004; Apuani et al., 2005; 
Moon et al., 2005; del Potro and Hürlimann, 2008; Heap 
et al., 2021a, b; Heap and Harnett, 2021; Wallace et al., 
2021). We show here that rock physical and mechani-
cal property estimates for volcano stability modelling, 
important assess volcanic hazards and mitigate risk, can 
be provided using Eqs. (1), (2), and (3) by measuring the 
δ18O values of representative samples collected from the 
flank or dome of a volcano. Composite δ18O-value cross-
sections of volcanoes (Rose et al., 1994) and δ18O values 
determined from borehole drill cuttings (Hattori and Mue-
hlenbachs, 1982) could also be used to prepare strength 
and Young’s modulus maps and profiles, respectively. 
Unlike laboratory experiments, which require reason-
ably large blocks from which to prepare the experimental 
samples, the approach to estimate strength and Young’s 
modulus outlined herein, i.e. Equations (1), (2), and (3), 
requires only < 1 g of material (as representative as pos-
sible; e.g., using a < 1-g aliquot of a larger mass of well-
mixed powdered material, if available) and is thus ideally 
suited to provide rock physical and mechanical property 
estimates when only limited material is available, such 

(1)�
c
= −13.8

(

�
18
O
)

+ 204.7

(2)�
t
= −0.70

(

�
18
O
)

+ 13.1

(3)E = −3.42
(

�
18
O
)

+ 54.0
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as drill cuttings from boreholes or when sampling large 
blocks is impracticable.

The three-dimensional structures and rock property dis-
tributions inside volcanic systems are usually inferred using 
targeted geophysical methods. Electrical methods, such as 
magnetotellurics and electrical resistivity tomography, have 
shown to be particularly useful to infer rock alteration dis-
tributions in hydrothermal systems because of the influence 
of secondary minerals in the bulk electrical conductivity 
of rocks (Rosas-Carbajal et al., 2016; Byrdina et al., 2018; 
Finn et al., 2022). Petrophysical relations that link these 
properties are, however, far from obvious. The difficulty in 
establishing simple relations between electrical conductivity 
and the percentage of alteration minerals seems to arise also 
from the dependence on the type of alteration (i.e. mineral 
composition), temperature, and fluid composition (Lévy 
et al., 2018; Ghorbani et al., 2018), similar to what we sug-
gest may happen for whole-rock oxygen isotope. Thus, it 
may be interesting to compare the whole-rock oxygen iso-
tope and the electrical conductivity dependence for different 
degrees of altered volcanic rocks. Having both properties 
measured for representative volcano samples could sig-
nificantly improve the upscaling of the physical properties 
measured in the laboratory to the field-scale three-dimen-
sional models obtained by geophysical methods.

Although we focus here on volcanological applications, 
our approach could be used to provide rock physical and 
mechanical property estimates for borehole stability assess-
ments and stimulation strategies in volcanic geothermal res-
ervoirs, which typically comprise altered rocks (Siratovich 
et al., 2014; Cant et al., 2018; Lévy et al., 2018). Whole-
rock δ18O values are also often used in mineral exploration 
(Green et al., 1983; Criss et al., 1985; Cathles, 1993; Paradis 
et al., 1993; Lentz, 1999), and could therefore also be used 
to provide rock physical and mechanical property estimates 
for rock drillability estimates and underground excavation 
stability assessments during mineral exploration and extrac-
tion in volcanic terrains.

One drawback of our approach, however, is that our 
analysis (Fig. 4) has been performed on rocks that show 
a decrease in strength and Young’s modulus as a result of 
hydrothermal alteration (Heap et al., 2021a, 2022a; Dar-
mawan et  al., 2022). However, hydrothermal alteration 
associated with pore- and crack-filling precipitation can 
increase strength and Young’s modulus (Marmoni et al., 
2017; Heap et al., 2020b, 2021b). As a result, care should 
be taken when using Eqs. (1), (2), and (3) to ensure that the 
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black circles; strength and Young’s modulus data from Heap et  al., 
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δ18O value. Experimental errors are within the size of the symbols. 
All these data are provided in an Excel® spreadsheet that accompa-
nies this contribution as Supplementary Information
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alteration observed in a particular setting does not appear 
to strengthen or harden the rock. Care should also be taken 
to ensure that the alteration is indeed low temperature 
(≤ 250 °C) hydrothermal alteration, and that the rocks have 
not undergone alteration at higher temperatures, which will 
decrease whole-rock δ18O values. Therefore, a detailed study 
of the mineral assemblage is required in order to use Eqs. 
(1), (2), and (3) confidently. To improve our approach to 
estimate rock physical and mechanical properties using δ18O 
values, more data are required for a wider variety of hydro-
thermally altered rocks, including those with different altera-
tion mineral assemblages (e.g. those containing smectite). 
We further note that the analysis presented here provides 
laboratory-scale values of strength and Young’s modulus, 
and so these values likely require upscaling before they are 
used in large-scale volcano models. Strength can be upscaled 
using, for example, the Hoek–Brown failure criterion (Hoek 
et al., 2002) and Young’s modulus can be upscaled using 
the Hoek-Diederichs equation (Hoek and Diederichs, 2006; 
Heap et al., 2020a).

Concluding remarks

Rock physical and mechanical properties are required for 
large-scale models designed to assess the stability of a 
lava dome or volcanic flank (Watters et al., 2000; Okubo, 
2004; Apuani et al., 2005; Moon et al., 2005; del Potro and 
Hürlimann, 2008; Heap et al., 2021a, b; Heap and Harnett, 
2021; Wallace et al., 2021). The ubiquity of hydrothermal 
alteration at active volcanoes (Aizawa et al., 2009; Rosas-
Carbajal et al., 2016; Byrdina et al., 2017, 2018; Finn et al., 
2018, 2022; Tseng et al., 2020; Kereszturi et al., 2021), 
and evidence suggesting that alteration compromises vol-
cano stability (van Wyk de Vries et al., 2000; Voight et al., 
2002; Salaün et al., 2011), underscores the need for not only 
understanding the influence of alteration on rock physical 
and mechanical properties, but also for well-constrained 
properties for altered volcanic rocks, data that are currently 
rare. In certain scenarios, such as when rock blocks large 
enough for laboratory experiments cannot be acquired (e.g. 
drill cuttings from boreholes, when the material is too friable 
or delicate to prepare samples for laboratory experiments, 
or when it is impracticable to sample and export a sufficient 
number of large blocks), or when laboratory equipment is 
not available, an independent measure of alteration that can 
be used to estimate the required rock physical and mechani-
cal properties would be extremely useful for routine volcano 
stability modelling. Such a method could also be used to 
estimate pre-failure rock properties from semi-consolidated 
friable material found in debris avalanches. Here we show 
that whole-rock δ18O values, a method that requires a very 
small amount of representative material, can be used to 

estimate the strength (compressive and tensile) and Young’s 
modulus of low-temperature (≤ 150–200 °C) hydrothermally 
(acid-chloride-sulphate) altered dome rocks. Based on the 
promise of the approach documented herein, we recommend 
that future studies further explore the relationship between 
whole-rock δ18O values and the physical and mechanical 
properties of altered rocks with different alteration assem-
blies (such as those that contain smectites).

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00445- 022- 01588-y.
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