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Abstract
Water content plays a significant role in magma genesis, ascent rate, and, ultimately, in the style and intensity of volcanic erup-
tions, due to its control on the density, viscosity and melting behaviour of silicate melts. A reliable method for determining the 
pre-eruptive magmatic water content is to use phenocrysts of nominally anhydrous minerals (NAMs) which can preserve water 
as hydrogen configurations in structural defects. The advantage of this method is that eruptive changes such as water loss during 
magma degassing may be experimentally reconstructed and analysed by infrared spectroscopy. Applying this to clinopyroxene 
crystals (n=17) from lava samples (n=7) from April 2021 of the Geldingadalir eruption, SW-Iceland, reveals parental water 
contents of 0.69 ± 0.07 to 0.86 ± 0.09 wt. %  H2O. These values are higher than those expected for typical mid-ocean ridge 
basalts (MORB 0.3–0.5 wt. % on average) indicating a significant plume (OIB) contribution to the magma source. Moreover, 
such water concentrations would imply that water saturation in the ascending Geldingadalir magmas was attained only at very 
shallow levels within the plumbing system. This could explain the at times pulsating behaviour within the uppermost conduit 
system as being the result of shallow episodic water vapour exsolution in addition to the deep-sourced  CO2 flux.

Keywords Water in nominally anhydrous minerals · Clinopyroxene phenocrystals · Pulsating eruption · Shallow magma 
degassing · Geldingadalir

Introduction

The amount of water in silicate melts influences their crystal-
lisation and melting temperatures, density, and viscosity, all 
of which exert a fundamental control on magma differentia-
tion, ascent, and the explosivity of volcanic eruptions (Cash-
man 2004; Edmonds and Wallace 2017; Ferguson et al. 2016; 
Gonnermann and Manga 2013; La Spina et al. 2022; Preece 
et al. 2016; Roggensack et al. 1997; Woods and Koyaguchi 
1994). Quantifying the magmatic water content of past and 
present eruptions, with respect to their geodynamic setting, is 
key in understanding future volcanic eruptions and predicting 
their eruptive behaviour (Cassidy et al. 2019; Marti and Folch 
2005; Wallace et al. 2015). There are various methods that can 
be used for determining the pre-eruptive water content of mag-
mas. Commonly, these rely on volatile contents of naturally or 
artificially quenched volcanic glasses (Malfait et al. 2014), or 
on melt inclusions trapped in phenocrysts (Métrich and Wallace 
2008; Petrelli et al. 2018; Sides et al. 2014); however, these may 
be affected by complex degassing, or are absent from samples 
(Dixon et al. 1997). Alternatively, the initial magmatic water 
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content can be determined by plagioclase-liquid hygrometry 
(Lange et al. 2009) or by using phenocrysts of nominally anhy-
drous minerals (NAMs) such as clinopyroxene (Aubaud et al. 
2004; Lloyd et al. 2016; Wade et al. 2008; Weis et al. 2015).

Clinopyroxene may incorporate water (as hydrogen) 
during magma crystallisation, through structural defects 
compensated by M2 cation vacancies or charge deficient 
substitutions (e.g. IVAl3+ +  H+ ↔  Si4+). However, the 
preservation of hydrogen in NAMs is challenged by its 
high mobility as a function of pressure, temperature, oxy-
gen fugacity, and water activity (Hercule and Ingrin 1999; 
Ingrin and Skogby 2000; Skogby et  al. 1990). Studies 
on intracrystalline hydrogen diffusivity show that it will 
attain equilibrium within minutes to hours in clinopyroxene 
with  XFe/(Fe+Mg)> 0.07, with kinetics similar to those of 
H-D exchange (Ingrin and Blanchard 2006). The outward 
hydrogen diffusion, during rehydration and dehydration 
processes, were shown to rely on the ferric to ferrous iron 
content and to follow the reversible redox reaction (Skogby 
and Rossman 1989):

During magma ascent and degassing, fluid pressure 
decreases, and NAMs may lose their hydrogen content in 
part or entirely (Hamada et al. 2011; Johnson et al. 2010; 
Preece et al. 2016). Depending on the eruption style and 
cooling speed, slow-crystallising lavas may suffer similar 
hydrogen loss (Wade et al. 2008). However, during dehydra-
tion and cooling under such conditions, the hydrogen-asso-
ciated defects are preserved as they are governed by cation 
and vacancy diffusion that are orders of magnitude slower 
than reaction (1) (Cherniak and Dimanov 2010; Ingrin and 
Blanchard 2006; Ingrin and Skogby 2000). This implies that 
clinopyroxene crystals can retain information about their ini-
tial hydrogen concentration and hence permits recalculation 
of parental magmatic water contents.

In this study, we use partially dehydrated clinopyroxene 
phenocrysts from basaltic, pahoehoe lavas emplaced within 
the Geldingadalir lava flow field (Fagradalsfjall Fires, Ice-
land) between 2 and 10 of April 2021. A total of 17 crys-
tals were studied from 7 samples collected over four main 
vents. The initial water content of the clinopyroxene was 
restored by performing a series of rehydration experiments 
and was subsequently measured by Fourier transform infra-
red spectroscopy (FTIR). These results were used together 
with calculated partition coefficients between clinopyroxene 
and basaltic magma to determine the pre-eruptive magmatic 
water content and to explore its implications for the mag-
matic source and for the influence on eruptive style dur-
ing the earlier phases of the Fagradalsfjall Fires multi-vent 
eruption.

(1)OH− + Fe2+ ↔ O2− + Fe3+ + 1∕
2
H

2

Geological background

Fagradalsfjall is a hyaloclastite tuya that is part of the oblique 
extensional structures on Reykjanes Peninsula (Fig. 1). After a 
dormant period of ~780 years, a low-intensity effusive eruption 
started on 19 March, 2021, with the opening of several small 
vents along a 180-m long segment in Geldingadalir valley, 
SE of Fagradalsfjall (Pedersen et al. 2021). The eruption was 
characterised by a steady lava discharge with bubble bursting 
and weak fountaining activity, accompanied by low-viscosity 
overflows and formation of spatter cones (Bindeman et al. 
2022; Halldórsson et al. 2022). Subsequently, five more vents 
opened from 5 to 13 April, following a N-NE trend from the 
central first eruption. The discharge rate increased from 6 ± 
0.5  m3/s to 9.8 ± 0.7  m3/s and the eruption shifted to lava 
fountaining of variable intensities accompanied by rhythmi-
cal overflows (Bindeman et al. 2022). By 2 May, only vent 5 
remained active, which progressively developed into a volcanic 
cone, recording the last lava flow of this eruptive episode on 
18 September, 2021.

Samples

All samples from this study (n=7) were collected from the 
interiors of freshly emanated Pahoehoe-type, olivine tholei-
ite lava flows, and the glowing-hot sampled material was 
subsequently quenched in air. Except for sample Fagra 3, 
which was collected on the second day after the opening 
of the eruptive fissure, all other samples were collected 
on the date of the opening itself (Table 1). For the sam-
pling period, magma discharge is estimated at 6 ± 0.5  m3/s 
(Bindeman et al. 2022), with associated gas pollution, lava 
flow, and moss fires, corresponding to the incipient and less 
intense part of the eruption (phase I to phase II, Barsotti 
et al. (2023)). Three samples were taken from vent 1 (April 
2 and 9), two samples from vent 2 (April 6 and 9), and one 
sample from vent 3 (April 9) and from vent 4 (April 10), 
respectively. The samples were selected in order to obtain a 
first-order estimate of magmatic water contents in the early 
stages of the eruption. The collected material consists mostly 
of finely crystalline to glassy basaltic lava, with ca. 10 vol. 
% visible phenocrysts comprising plagioclase, olivine, and 
pyroxene. The latter are the least abundant, accounting for 
approximately 5 to 15 vol. % of the total amount of phe-
nocrysts in the investigated samples. In addition, clinopyrox-
ene grain size varies considerably, from ~50 μm to > 1 mm, 
among the different samples as well as within individual 
samples. The crystals are irregularly shaped, of dark green 
colour and lack any obvious cracks or inclusions.
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Methods

The lava samples were gently crushed and clinopyroxene 
crystals were handpicked under a binocular microscope. Two 

to three grains per sample (Table 1) were chosen based on 
size, pristine appearance, and morphology. All crystals (n= 
17) were mounted in thermoplastic resin and based on their 
morphology and extinction angles were oriented along the 
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Fig. 1  The 2021 Geldingadalir eruption site on the Reykjanes Pen-
insula. (a) Insert of Iceland and main rift zones (NVZ = Northern 
Volcanic Zone; MIB = Mid-Iceland Belt; WVZ = Western Volcanic 
Zone; EVZ = Eastern Volcanic Zone; RVB = Reykjanes Volcanic 
Belt) and geological map of the Reykjanes Peninsula. Historical 
(late Holocene) eruptions are marked in blue (Reykjanes, Svartsengi, 
Fagradalsfjall, Krýsuvík, Brennisteinsfjöll), prehistoric eruptions are 
marked in yellow (postglacial) and pink (upper Pleistocene to early 

Holocene), and the lava field from the 2021 Fagradalsfjall eruption 
is marked in red. (b) Orthophotograph (www. earth. esa. int/ eogat eway/ 
missi ons/ pleia des) corresponding to the red box in figure a. The loca-
tion of sampling points is marked with white circles and numbered 
according to the days since the beginning of the eruption. Eruptive 
vents are marked with red triangles and are numbered according to 
the order in which they erupted. Figure after data from Bindeman 
et al. (2022); Einarsson (2008); and Sæmundsson (2016)

Table 1  Information regarding sample collection and analyses

Sample details from Bindeman et al. 2022
*Days since eruption start. March 19th = day zero

Sample name Latitude Longitude Eruption date Sampling date Sample description Days * No. of 
grains 
analysed

Fagra 1 (IC-GEL-PAH-Vent1-03) 63.8897 −22.2777 02 April 2021 02 April 2021 Active pahoehoe lava flow. 14 2
Fagra 2 (IC-GEL-PAH-Vent1-04) 63.8878 −22.2771 02 April 2021 02 April 2021 Active pahoehoe lava flow. 14 3
Fagra 3 (IC-GEL-PAH-Vent2-01) 63.8932 −22.2439 06 April 2021 06 April 2021 Pahoehoe lava. Taken liquid-

fresh from the lava of the new 
fissure about one day after it 
opened

18 2

Fagra 4 (IC-GEL-PAH-Vent2-02) 63.8951 −22.2660 09 April 2021 09 April 2021 Active pahoehoe lava flow. 21 2
Fagra 5 (IC-GEL-PAH-Vent3-01) 63.8923 −22.2689 08 April 2021 09 April 2021 Pahoehoe lava. 20 3
Fagra 6 (IC-GEL-BLK-Vent1-05) 63.8838 −22.2755 09 April 2021 09 April 2021 Active pahoehoe lava flow. 21 3
Fagra 7 (IC-GEL-PAH-Vent4-01) 63.8931 −22.2645 10 April 2021 10 April 2021 Active pahoehoe lava flow. 22 2

http://www.earth.esa.int/eogateway/missions/pleiades
http://www.earth.esa.int/eogateway/missions/pleiades
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crystallographic c axis, and their (100) and (010) crystal 
faces (see detailed procedure in Stalder and Ludwig (2007)). 
Crystals were polished to a thickness of a few tens to hun-
dreds of micrometres using  Al2O3-grinding paper of vari-
ous particle size-grade (Table 2). The clinopyroxene crys-
tals analysed for their water content were also analysed for 
major element chemistry by electron micro probe analyses 
(EMPA). All sample preparation and analyses were carried 
out at the Swedish Museum of Natural History, Sweden, 
except for microprobe analyses, which were performed at 
the University of Freiburg, Germany.

Aerial UAV imaging

Video recordings of the main crater were acquired on 8 
June 2021 by drone loop overflights or static hovering in the 
vicinity of the crater. These were captured with a standard 
DJI Mavic Air 2 drone quadcopter equipped with a ½″ (1.27 
cm) CMOS camera sensor and a three-axis gimbal for image 
stabilisation. The recordings were acquired in high-resolu-
tion 4k video format, from which frames were extracted and 
used to create image series. The weather conditions during 
drone flights were calm and sunny, and the wind direction 
and plume drift were considered when establishing the flight 
paths. Due to intense helicopter traffic, flight altitude was 
set unusually low (~50m above the crater), which limited 

the available region from the row of craters and lava flows. 
The acquired images are oriented northwards, capturing the 
main direction of the lava flow (which was predominantly 
towards the south), and the pulsating behaviour at the vents.

Electron micro probe analysis

Mineral major element chemistry was acquired using a 
Cameca SX100 electron microprobe under standard oper-
ating conditions of 15 kV accelerating voltage and 20 nA 
beam current. Two spots were analysed on each crystal, with 
a focused beam of 1μm diameter and 20 s counting time on 
peak and 10 s on background. Iron content is reported as 
 FeOt. The spectrometers were calibrated using diopside for 
Ca and Si, orthoclase for K, albite for Na, spessartine for 
Mn, rutile for Ti, magnesium oxide for Mg, hornblende for 
Al, hypersthene for Fe, and chromite for Cr. The crystals 
showed no marked zonation in backscattered electron (BSE) 
images. Standard deviations for major oxides are as follows: 
 SiO2 ~0.29 wt%,  TiO2 ~0.03 wt%,  Al2O3 ~0.08 wt%, FeO 
~0.25 wt%, MnO ~0.08 wt%, MgO ~0.14 wt%, CaO 0.43 
wt%,  Na2O ~0.04 wt%.,  K2O ~0.03 wt%,  Cr2O3 ~0.07 wt%. 
Using the obtained chemical composition in oxide weight 
percentages, the number of atoms per formula unit was 
calculated based on six oxygen, four cation normalisation. 
Additionally, the  Fe2+ and  Fe3+ content was calculated using 
the results of the Mössbauer analyses.

Rehydration experiments

Hydrogen-associated defects in oriented clinopyroxene 
were experimentally refilled by placing the crystals in a 
gold sample holder and introducing them into a horizontal 
glass-tube furnace, where they were kept under a stream of 
 H2 gas at 700 °C and 1atm. The temperature was controlled 
with a  Pt100–Pt90Rh10 thermocouple placed directly above 
the samples, in the middle of the furnace, with an estimated 
uncertainty of ±2 °C. Prior to introducing the samples, the 
medium inside the furnace was preconditioned under a flux 
of  CO2 gas, to prevent any reaction between the crystals and 
ambient  O2, or an explosion when introducing the  H2 gas. 
The crystals were kept under these conditions for an initial 
16 h, followed by variable time intervals (Table 2). The total 
duration of the experiment (37–94 h) varied based on crystal 
thickness. FTIR analyses were performed after each step, to 
determine if hydrogen diffusion coupled to redox reaction 
(1) was arrested, and all hydrogen-associated defects in the 
clinopyroxene crystals were filled.

Previous studies used the experimental procedure above 
to rehydrate clinopyroxene (Bromiley and Keppler 2004; 
Skogby 2006; Sundvall et al. 2008; Weis et al. 2015), and 
show that under these specific conditions, hydrogen diffu-
sion related to reaction (1) is several orders of magnitude 

Table 2  Water contents of clinopyroxene crystals from Geldingadalir 
lavas, before and after  H2-treatment

n.d. not determined

Sample Water content (ppm wt.  H2O) Thickness 
(μm) (010)/
(100)Untreated After  H2 

treatment 
(37h)

After  H2 
treatment 
(94h)

Fagra 1 (1) 10 n.d. 137 480/950
Fagra 1 (2) 32 132 n.d. 270/220
Fagra 2 (1) 6 144 n.d. 195/235
Fagra 2 (2) 13 136 n.d. 155/120
Fagra 2 (3) 17 170 n.d. 160/150
Fagra 3 (1) 6 134 n.d. 355/575
Fagra 3 (2) 13 167 n.d. 225/240
Fagra 4 (1) 9 125 n.d. 230/385
Fagra 4 (2) 17 149 n.d. 270/450
Fagra 5 (1) 11 119 n.d. 315/285
Fagra 5 (2) 12 119 n.d. 270/435
Fagra 5 (3) 27 141 n.d. 365/190
Fagra 6 (1) 8 132 n.d. 220/360
Fagra 6 (2) 7 142 n.d. 360/290
Fagra 6 (3) 11 108 n.d. 205/200
Fagra 7 (1) 21 175 n.d. 285/84
Fagra 7 (2) 18 131 n.d. 190/280
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faster than vacancy diffusion. Therefore, at the given PT 
conditions and time intervals, resetting or creating new 
structural defects is not likely (Ingrin and Blanchard 2006; 
Ingrin and Skogby 2000).

FTIR spectroscopy

Polarised FTIR spectra were acquired on the oriented crys-
tals in the 2000–15,000  cm−1 wavenumber interval along 
the three main refractive indices (α, β, and γ). The analyses 
were done with a Bruker Vertex 70 spectrometer equipped 
with a NIR source (halogen lamp) and a  CaF2 beamsplit-
ter, coupled with a Hyperion 2000 microscope, with a ZnSe 
wiregrid polariser and an InSb detector. A total of 128 scans 
were acquired and averaged for both the background and the 
samples, with a 4  cm−1 resolution. The aperture was adjusted 
(100–200 μm) for masking, to avoid any cracks and inclu-
sions. Crystal thickness varied between 85 and 950 μm, with 
most crystals having a thickness between 200 and 360 μm 
for both (100) and (010) orientations.

The spectra obtained were baseline corrected by a poly-
nomial function and the characteristic OH peaks were fitted 
with the PeakFit software. The water content was calculated 
through a modified equation of the Beer-Lambert law: c = 
 Ato/(ε × t), where c is the water content in ppm by weight, 
 Atot is  Aα +  Aβ +  Aγ (the integrated absorbance meas-
ured parallel to the optical indicatrix directions) expressed 
in  cm−2, and t is the thickness in cm and ε is the specific 
absorption coefficient. In this study, we use the wavenumber-
dependent calibration by Libowitzky and Rossman (1997).

Mössbauer spectroscopy

The oxidation states of iron  (Fe2+ and  Fe3+) before and after 
experimental rehydration were obtained by Mössbauer spec-
troscopy. Several crystals from each sample were powdered 
(~1–3 mg) and mixed with thermoplastic resin and shaped 
under mild heat (~80 °C) into a cylindric absorber (1x2 mm). 
The samples were then mounted on a strip of tape and analysed 
with a 57Co point source (active diameter 0.5 mm), at room 
PT conditions, at a 90° incident angle to the γ rays. All spectra 
were calibrated against an α-Fe foil, folded and reduced from 
1024 to 512 channels, and fitted with the MossA software. For 
fitting, two doublets were assigned for  Fe2+ and one doublet 
for  Fe3+ in the M1 and M2 octahedral positions. The percent-
age of each oxidation state of iron relative to the total iron 
content (±1%) was obtained from the areas of the doublets, 
assuming similar recoil-free fractions for  Fe2+ and  Fe3+.

Magmatic water content calculation

The pre-eruptive magmatic water content of the host basaltic 
magma was calculated using the water contents measured 

after  H2–treatment and a water partition coefficient specific 
for Ca-rich clinopyroxene and silicate melts. The amount 
of hydrogen incorporated in the pyroxene structure is 
often correlated to the amount of tetrahedral aluminium. 
As such, the partition coefficient between each analysed 
crystal and its parental magma was calculated using the 
equation of O’Leary et al. (2010): lnD = −4.2 (±0.2) + 
6.5 (±0.5)VI[Al3+] – 1.0 (±0.2)[Ca2+]. Subsequently a pre-
eruptive magmatic water content was calculated for each 
crystal and averaged per sample.

Thermobarometry

Crystallisation pressures and temperatures were determined 
for the investigated samples by using the measured clinopy-
roxene compositions, calculated magmatic water content, and 
whole-rock data from Bindeman et al. (2022). We applied 
the clinopyroxene-liquid barometer by Neave and Putirka 
(2017) coupled with the thermometer (equation 33) from 
Putirka (2008), both employing jadeite-diopside/hedenber-
gite exchange equilibria between clinopyroxene and the host 
magma. We used a double iteration method, based on equa-
tion (30) from Putirka (2008) and the pressure-independent 
thermometer from Putirka et al. (1996), for calibration. The 
Neave and Putirka (2017) barometer was proven to be reli-
able when calculating pressures up to 20 kbar for samples 
of basaltic composition (Nazzareni et al. 2020), improving 
on previous barometers (e.g., equation 30, Putirka (2008)). 
We tested for equilibrium on the basis of Fe-Mg partition 
coefficient between the clinopyroxene crystals and the host 
magma, and obtained  KD(Fe-Mg)cpx-liq values in compliance 
with the 0.28 ± 0.08 required (Putirka 2008), and by com-
paring multiple “predicted” clinopyroxene components with 
those calculated (Geiger et al. 2018; Mollo et al. 2013).

Results

Major element mineral chemistry

The clinopyroxene major element compositions obtained by 
EMPA and the calculated cations per formula unit are listed 
in supplementary Table A1. All analysed clinopyroxene crys-
tals are augites with relatively low (0.15–0.31 wt.%)  TiO2 
content (Table A1 and Fig. 2). The compositions obtained 
fall in the same range as those obtained by Halldórsson et al. 
(2022), and are similar to clinopyroxene from other Icelan-
dic eruptions (North Volcanic Zone, Hartley and Thordarson 
(2013); EVZ–East Volcanic Zone, Passmore (2009); South 
Volcanic Zone, Nikkola et  al. (2019)). The Mg# values 
range between 0.86 and 0.89, with no significant variations 
recorded among different grains of the same sample. Simi-
larly, no intra-crystalline heterogeneities were observed in 



 Bulletin of Volcanology           (2023) 85:31 

1 3

   31  Page 6 of 18

the BSE images, nor between the compositions measured in 
different spots per grain. The calculated VIAl/IVAl ratio varies 
between 1.5 and 1.9 (1.7 ± 0.09 average value).

FTIR analysis and rehydration

All analysed crystals show typical absorption bands at 
3640, 3520, and 3460  cm−1 in the IR spectra (Fig. 3), with 
the former most prominent when measured along the α and 
β directions, and the latter, around 3520 and 3460  cm−1, 
most marked along the γ direction. This pleochroic behav-
iour, common in clinopyroxene, is due to the OH dipole 
being crystallographically oriented (Beran 1976; Skogby 
et  al. 1990; Weis et  al. 2015). The absence of a peak 
around 5200  cm−1 and of a broader band in the 3000–3700 
 cm−1 region indicates that the absorbing hydrogen config-
uration is OH, and there is no significant  H2O contribution 
from within the crystal or nanometre-sized fluid inclu-
sions. Prior to  H2 heat treatment, the crystals show very 
weak absorptions and peaks, which increase significantly 
in all three directions after the treatment (Fig. 3). The most 
significant change in the absorption spectra is the height 
increase of the peak at 3640  cm−1, with the peak positions 

remaining unchanged. The corresponding water content, 
calculated with the Libowitzky and Rossman (1997) 
wavenumber-dependent calibration, registers an equally 
significant increase (Table 2). The untreated crystals yield 
water contents of ~5–30 ppm, which increases to 110–175 
ppm after hydrogen treatment. The water content shows 
minor variation among the crystals from the same sample, 
or among the different samples (Fig. 4), which may be 
accounted for by errors due to the peak fitting process.

Mössbauer analysis

The detailed parameters for Mössbauer spectroscopy are 
shown in Table 3 and representative spectra with doublets 
for  Fe2+ and  Fe3+, measured on untreated and  H2-treated 
samples, are shown in Fig. 5. The  Fe3+/Fetot ratio of the 
untreated clinopyroxene crystals ranges between 12 and 
13%, and upon  H2 heat treatment, all samples register a 30 to 
45% reduction of  Fe3+ (3.6–6.0% ΔFe3+ measured, Table 4).

Magmatic water contents

The average magmatic water content calculated using the 
water concentrations of experimentally rehydrated crystals 
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responds to water content measured on the untreated crystal, and the 
dark blue area corresponds to water content measured after  H2–exper-
iments were performed. The spectra shown were measured on sample 
Fagra1(1) and show a marked increase in peak intensity and thus in 
corresponding water content
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and the partition coefficients from the equation of O’Leary 
et al. (2010) varies between 0.65 ± 0.06 and 0.86 ± 0.09 
wt.% (Table 5). There is no detectable variation among the 
samples from different vents or eruption dates. All calcu-
lated magmatic water contents, before and after  H2 treat-
ment, are summarised in Fig. 4.

Thermobarometry

Estimating the crystallisation pressures and temperatures 
is essential for calculating the depths at which magma 
was stored prior to eruption and for integrating our pet-
rological and geochemical results within the active vol-
canic setting. Basing these estimates on pyroxene-liquid 
chemical exchange equilibria was experimentally proven 
to be a reliable method, as pyroxene crystallises early 
in mafic melts and its composition is very sensitive to 
pressure changes at magmatic temperatures (Neave and 
Putirka 2017; Putirka 2008). Of the clinopyroxene crys-
tals analysed for major elements, 26 crystals were used 
for the P-T determinations and have partitioning coeffi-
cients  (KD(Fe-Mg)cpx-liq) with the associated melt ranging 
between 0.28 and 0.29 (Table 6).

Using the clinopyroxene-liquid barometer of Neave 
and Putirka (2017) combined with the thermometer of 
Putirka (2008) and the calculated magmatic water con-
tent, the investigated clinopyroxene yield pressures and 
temperatures ranging from 1.9 to 5.3 kbar and ~1210 

to ~1255 °C. Assuming a rock column density of 3111 
kg/m3 (Tenzer 2013), these P-T conditions correspond 
to crystallisation depths between 6 and 16 km, pointing 
towards an average storage depth of 10 km.

Discussion

Clinopyroxene rehydration and associated 
processes

The water content before  H2 treatment varies among the 
investigated samples and among crystals from the same sam-
ple by a factor of 2 to 3 (Table 2), despite their relatively 
homogeneous major element composition. This variation is 
likely due to different degrees of pre- or syneruptive dehy-
dration, controlled by grain size and local PT conditions or 
oxidising gradients within the host magma, and does not 
reflect variations of primary  H2O content in the parental 
liquids. After  H2 treatment, the water content is compara-
tively homogeneous in each sample (Fig. 4), roughly within 
the 10% error of FTIR analysis, showing that most crys-
tals reached saturation within 37h of the experiment. For 
the rehydrated crystals, only minor variations are recorded 
among the different samples (Table 2), which are almost 
within the analytical error. However, there is no correlation 
between water content and sampling date or location.

For the untreated crystals, we propose that hydrogen loss 
was driven by outward diffusion, which at magmatic temper-
atures (>800 °C) can occur over several millimetres in a few 
hours (Woods et al. 2000). If dehydration took place during 
the eruption, diffusion profiles showing outward decreasing 
water contents could be quenched in the crystals; however, 
no such profiles were recorded in our samples. This might 
be either due to the crystal rims being partially removed 
during polishing, or they might be undetected at the level of 
the spatial resolution of the FTIR analyses. Alternatively, in 
a slow cooling magma, no such profiles would be expected. 
Hydrogen solubility and diffusion are also controlled by 
fluid pressure and redox conditions. Upon magma ascent, 
volatiles are exsolved and lost, and fluid pressure in the 
magma decreases. The clinopyroxene crystals equilibrating 
with the progressively degassing magma are expected to lose 
their hydrogen content partly or totally, following the redox 
reaction (1). Within the conduit system, the redox state of 
the magma may be influenced by reactions coupled with  SO2 
exsolution, making it progressively more reduced (Métrich 
et al. 2009; Moussallam et al. 2014). However, given the 
low abundance of pyroxene phenocrysts within the sam-
pled lavas (0.005–0.015%), with concentrations of ~0.013 
wt.%  H2O/crystal, most of the water in the system would 
have remained in the melt prior to eruption. Moreover, the 
 SO2/H2O emission ratio measured at the vents is of 1:10 
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Fig. 4  Water content distribution among untreated and  H2-treated 
clinopyroxene crystals. The contents are based on FTIR measure-
ments and show an increase between the untreated (light blue) and 
the  H2–treated (dark blue) crystals, with no significant variation 
within individual samples. The error bars correspond to ±10%
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(Halldórsson et al. 2022). Sulphur exsolution would have 
therefore had a negligible effect on the melt/clinopyroxene 
water exchange. Additional late-stage degassing may occur 
upon exposure to the oxidising atmosphere during eruption. 
It is likely that degassing and oxidising processes will affect 
the magma unevenly, leading to local gradients and for some 
clinopyroxene crystals to lose more hydrogen than others. 
Another factor that may influence the amount of hydrogen 
lost through outward diffusion is the crystal size. Given that 
recent studies show that the 2021 eruption at Geldingadalir 
was fed directly from a near-Moho magma reservoir (Binde-
man et al. 2022; Halldórsson et al. 2022) with no significant 
shallow crustal stalling, we consider dehydration within 
the conduits, i.e. during magma ascent, as most probable to 
explain the observed variations, but cannot fully exclude an 
influence from local heterogeneities in the host magma, or 
from oxidising processes upon eruption.

Mössbauer spectroscopy was used on non-treated pyroxene 
crystals, and crystals that underwent similar  H2 experimental 
treatment, to verify the role of redox reaction (1) during hydro-
gen loss and gain. The results obtained demonstrate a reduction 
of  Fe3+/Fetotal by 25–47% after thermal annealing (Table 3) with 
a median value at 36%. The change in the  Fe3+ atoms per for-
mula unit (pfu) expected for a 1:1 proportion with the hydrogen 
uptake is significantly lower (Table 4). The ΔFe3+ pfu calculated 
based on measured OH content increase during rehydration, fol-
lowing the redox reaction (1), varies from 1.1 ± 0.1 to 1.7 ± 
0.1%, whereas the measured ΔFe3+ pfu ranges from 3.6 ± 0.2 to 
6.0 ± 0.3%. This difference could be due to the combined ana-
lytical error of Mössbauer and FTIR analyses or caused by the 
small variations in major element composition and water con-
tent among different crystals. The  Fe3+/Fetotal ratios were meas-
ured on several powdered crystals, whereas the calculated  Fe3+ 
pfu and water content were determined for individual crystals. 

Table 3  Mössbauer spectroscopy results (all analyses were done with point source)

int, intensity in percentage  Fem+/Fetotal; fwhm, full width at half maximum (including source width); cs, centroid shift; qs, quadrupole splitting

Sample Multiplet Initial After  H2 treatment ΔFe3+ (%)

int (%) fwhm (mm/s) cs (mm/s) qs (mm/s) int (%) fwhm (mm/s) cs (mm/s) qs (mm/s)

Fagra 1
  Fe2+ Doublet 1 69.5 0.44 1.15 1.96 61.2 0.42 1.14 1.93 36

Doublet 2 18.9 0.44 1.17 2.44 31.3 0.45 1.14 2.34
  Fe3+ Doublet 1 11.6 0.59 0.44 0.56 7.47 0.51 0.50 0.50
Fagra 2
  Fe2+ Doublet 1 61.7 0.42 1.15 1.93 77.6 0.46 1.14 1.97 31

Doublet 2 25.0 0.44 1.16 2.40 13.3 0.39 1.11 2.52
  Fe3+ Doublet 1 13.3 0.59 0.42 0.64 9.10 0.57 0.45 0.50
Fagra 3
  Fe2+ Doublet 1 66.6 0.44 1.14 1.95 82.1 0.48 1.14 1.99 47

Doublet 2 21.8 0.45 1.15 2.46 11.8 0.35 1.12 2.55
  Fe3+ Doublet 1 11.7 0.65 0.43 0.50 6.1 0.42 0.60 0.45
Fagra 4
  Fe2+ Doublet 1 47.4 0.43 1.15 1.89 82.6 0.48 1.15 1.98 39

Doublet 2 39.2 0.55 1.15 2.35 9.2 0.31 1.15 2.56
  Fe3+ Doublet 1 13.4 0.54 0.42 0.70 8.2 0.60 0.42 0.60
Fagra 5
  Fe2+ Doublet 1 59.0 0.43 1.15 1.90 75.7 0.48 1.15 1.96 36

Doublet 2 24.6 0.42 1.17 2.46 12.8 0.38 1.15 2.50
  Fe3+ Doublet 1 16.4 0.60 0.43 0.60 10.4 0.60 0.43 0.77
Fagra 6
  Fe2+ Doublet 1 59.8 0.42 1.14 1.96 72.3 0.48 1.15 1.96 25

Doublet 2 25.7 0.43 1.16 2.60 16.9 0.39 1.16 2.49
  Fe3+ Doublet 1 14.5 0.60 0.43 0.55 10.9 0.60 0.42 0.55
Fagra 7
  Fe2+ Doublet 1 58.7 0.44 1.14 1.95 65.1 0.44 1.15 1.90 30

Doublet 2 29.0 0.44 1.16 2.40 26.3 0.43 1.14 2.40
  Fe3+ Doublet 1 12.1 0.63 0.43 0.60 8.5 0.51 0.40 0.68
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Similar deviations from the values expected for a 1:1 exchange 
following the redox reaction (1) were previously reported by 
Bromiley and Keppler (2004); Sundvall et al. (2008); and Weis 
et al. (2015).

Although there is no significant variation in the total 
Fe content of the different pyroxenes, the change in the 
amount of  Fe3+ after hydrogen treatment is not constant 
(Table 3) and could explain the small water content vari-
ations post rehydration (e.g. Fagra 3: 47% ΔFe3+, up to 
167 ppm wt.  H2O). Additionally, other mechanisms could 
contribute to hydrogen incorporation and an increase in 
water solubility in clinopyroxene with increasing IVAl3+ 
was previously noted by Hauri et  al. (2006); Skogby 
(2006); and Weis et al. (2015).

Calculated PT conditions and magmatic water 
contents

The calculated crystallisation pressures and temperatures 
(1.9–5.3 kbar, ~1210–1255) for the studied clinopyroxene 
overlap with previous determinations for the 2021 Geldin-
gadalir eruption (Halldórsson et al. 2022), and similarly, 
the estimated crystallisation depths (10 km average) are 
in agreement with the current models for magma storage 
beneath Fagradalsfjall (Fig. 6; Bindeman et al. (2022); Hall-
dórsson et al. (2022)). These models imply a main near-
Moho magma reservoir, located between 15 and 20 km 
depth, that was fed by various mantle sources. Within this 
contextual framework, we estimate the final equilibration 
of the clinopyroxene crystals with the host magma, as well 
as the formation of hydrogen-associated structural defects, 
to have taken place at the upper limit of the magma stor-
age system and within the lower part of the magma conduit 
(Fig. 7a).

The average magmatic water contents from this study 
based on the dehydrated (non-treated) clinopyroxene 
(0.04–0.13 wt.%  H2O) are in agreement with those reported 
in glass shards by Bindeman et al. (2022) (0.00–0.22 wt.% 
 H2O) for the Geldingadalir 2021 eruption (Fig. 8). The latter, 
which underwent total or partial degassing during rapid lava 
cooling, register δD values (−69.2 to −109.7‰) consistent 
with both Rayleigh- and Batch-type fractionation during 
degassing (Bindeman et al. 2022) and indicate that the clino-
pyroxene crystals underwent similar processes. For Geld-
ingadalir clinopyroxene, between 74 and 94% of the initial 
magmatic water content is estimated to have been lost during 
dehydration. Conversely, the contents we report here for the 
Geldingadalir magmas based on the rehydrated  (H2–treated) 
clinopyroxene (0.65–0.86 wt.%  H2O) overlap with the upper 
range of previous estimates for Icelandic subglacial volca-
noes (0.10–1.02 wt.%  H2O, Nichols et al. (2002)) and with 
the lower range of water estimates for ocean island basalts 
generally (Dixon et al. 1997; Weis et al. 2015). These water 
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Fig. 5  Representative Mössbauer spectra for untreated and  H2–treated 
clinopyroxene. The spectra show typical  Fe2+ (blue) and  Fe3+ (red) 
doublets, used to estimate the ratio of the two iron oxidation states. 
The spectra shown were measured on clinopyroxene from sample 
Fagra1 and show a strong decrease in the  Fe3+ content after  H2–treat-
ment, as expected (see text for details)

Table 4  Changes in  Fe3+/Fetotal after  H2-treatment

*Change in water content per formula unit, after  H2 experimental 
treatment
**Expected change in  Fe3+/Fetotal correlated to OH incorporation
***Change in  Fe3+/Fetotal measured by Mössbauer spectroscopy

Sample ΔOH (pfu)* Fetotal (pfu) ΔFe3+ (pfu) 
expected 
(%)**

ΔFe3+ 
measured 
(%)***

Fagra 1 0.0015 ± 0.0002 0.1429 1.2 ± 0.05 4.1 ± 0.2
Fagra 2 0.0017 ± 0.0002 0.1460 1.3 ± 0.12 4.2 ± 0.2
Fagra 3 0.0016 ± 0.0000 0.1381 1.2 ± 0.09 5.5 ± 0.2
Fagra 4 - - - 5.2 ± 0.2
Fagra 5 0.0014 ± 0.0000 0.1424 1.1 ± 0.09 6.0 ± 0.3
Fagra 6 0.0015 ± 0.0002 0.1251 1.3 ± 0.07 3.6 ± 0.3
Fagra 7 0.0017 ± 0.0004 0.1306 1.7 ± 0.06 3.6 ± 0.2
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Table 5  Magmatic water 
content inferred from 
clinopyroxene

*Water content after  H2-treatment

Sample H2Ocpx (ppm)* D(cpx/melt) lnD(cpx/melt)
VIAl3+ Ca2+ H2Omelt (wt.%) Average 

 H2Omelt 
(wt.%)

Fagra 1 (1) 137 0.017 −4.094 0.137 0.786 0.8 0.82
Fagra 1 (2) 132 0.016 −4.138 0.130 0.781 0.8
Fagra 2 (1) 144 0.017 −4.053 0.144 0.786 0.8 0.84
Fagra 2 (2) 136 0.016 −4.120 0.130 0.767 0.8
Fagra 2 (3) 170 0.020 −3.919 0.163 0.779 0.9
Fagra 3 (1) 134 0.018 −4.042 0.145 0.785 0.8 0.86
Fagra 3 (2) 167 0.018 −4.042 0.145 0.785 1.0
Fagra 4 (1) 126 0.018 −4.042 0.145 0.785 0.7 0.78
Fagra 4 (2) 149 0.018 −4.042 0.145 0.785 0.8
Fagra 5 (1) 119 0.017 −4.067 0.139 0.768 0.7 0.69
Fagra 5 (2) 119 0.021 −3.855 0.175 0.792 0.6
Fagra 5 (3) 141 0.017 −4.067 0.138 0.767 0.8
Fagra 6 (1) 132 0.019 −3.964 0.159 0.797 0.7 0.65
Fagra 6 (2) 142 0.019 −3.967 0.156 0.784 0.8
Fagra 6 (3) 108 0.021 −3.854 0.176 0.797 0.5
Fagra 7 (1) 175 0.019 −3.962 0.157 0.780 0.9 0.80
Fagra 7 (2) 131 0.019 −3.962 0.157 0.780 0.7

Table 6  Thermobarometry 
results

*Calculated based on Neave and Putirka, 2017
**Estimated assuming a crusta-mantle average density of 3111 kg/m3 (Tenzer, 2013)

Sample T (°C) (Putirka 
2008)

Pressure* (kbar) Depth** (km) KD(Fe-Mg)cpx-liq

Fagra 1 (1)_1 1228 3.09 10 0.29
Fagra 1 (1)_2 1229 3.12 10 0.29
Fagra 1 (2)_1 1220 2.29 7 0.29
Fagra 1 (2)_2 1220 2.07 6 0.29
Fagra 2 (1)_1 1219 2.53 8 0.29
Fagra 2 (1)_2 1221 2.56 8 0.29
Fagra 2 (2)_1 1236 3.81 12 0.29
Fagra 2 (2)_2 1236 3.78 12 0.29
Fagra 2 (3)_1 1232 3.62 11 0.29
Fagra 2 (3)_2 1237 4.00 12 0.29
Fagra 5 (1)_1 1233 3.83 12 0.29
Fagra 5 (1)_2 1236 3.84 12 0.29
Fagra 5 (2)_1 1246 5.26 16 0.29
Fagra 5 (2)_2 1238 4.66 15 0.29
Fagra 5 (3)_1 1254 5.23 16 0.29
Fagra 5 (3)_2 1240 4.75 15 0.29
Fagra 6 (1)_1 1238 4.16 13 0.29
Fagra 6 (1)_2 1209 1.93 6 0.28
Fagra 6 (2)_1 1239 4.16 13 0.29
Fagra 6 (2)_2 1223 2.87 9 0.29
Fagra 6 (3)_1 1246 5.22 16 0.29
Fagra 6 (3)_2 1236 4.22 13 0.29
Fagra 7 (2)_1 1230 3.43 11 0.29
Fagra 7 (2)_2 1230 3.37 10 0.29
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contents are higher than average Mid-Atlantic and Rey-
kjanes Ridge basalts (Bindeman et al. 2022; Michael and 
Schilling 1989; Nichols et al. 2002; Poreda et al. 1986) and 
likely reflect the variably water-enriched OIB-type magma 
compositions that fed the reservoir beneath Fagradalsfjall 

(Bindeman et al. 2022; Halldórsson et al. 2022). This is 
in agreement with observations by Nichols et al. (2002), 
according to which the highest water contents along the Rey-
kjanes Ridge (~0.4–1.1 wt.%.  H2O), including the range we 
obtain for Geldingadalir magma (0.65–0.86 wt.%  H2O), are 
found in samples collected close (±200 km) to the plume 
centre. Since there was no prolonged ponding and equilibra-
tion of the magma at shallow crustal levels (Bindeman et al. 
2022; Halldórsson et al. 2022) and given the estimated depth 
of the studied pyroxene (6–16 km), no resetting of structural 
defects is thought to have occurred post-crystal-magma equi-
libration. As such, the calculated magmatic water contents 
inferred from the  H2-treated crystals likely reflects the ini-
tial water content of the magma residing beneath Geldinga-
dalir during the 2021 eruption. According to the evolution 
of the magmatic system with time (Bindeman et al. 2022; 
Halldórsson et al. 2022), the lava extruded at the start of 
the eruption, in March 2021, was mostly derived from a 
relatively depleted mantle source, and it rapidly became 
more enriched, with increasing contributions from a more 
enriched mantle source. In consequence, the calculated mag-
matic water contents for the April 2021 lava samples may 
offer insight into the water content of Icelandic plume mag-
mas, at least in this region of the plume system.
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Magma degassing and volcanological implications

With decreasing total fluid pressure  (PCO2+PH2O), the sol-
ubility of volatiles (i.e.  CO2,  H2O,  SO2) in magma decreases 
(Burton et al. 2007; Holloway and Blank 1994; Moore et al. 
1998), and as the magma becomes saturated and these vola-
tile species are exsolved, gas bubbles begin to form and 
accumulate (Fig. 7b). In the case of the Geldingadalir 2021 
eruption, following pre-eruptive deformation patterns and 
inferred volume change, it is likely that a volatile mixture of 
≥70%  CO2 exsolved from the initial magma and ascended 
as an immiscible supercritical fluid before the onset of the 
eruption (Flóvenz et al. 2022). This conceptual model indi-
cates an earlier and deeper  CO2 exsolution resulting in high 
 CO2 emissions, as a background for shallow  H2O and  SO2 
exsolution during the eruption (Sigmundsson et al. 2020). 
This is an agreement with multispectral data for surface gas 
emissions and groundmass glass compositions (Halldórsson 
et al. 2022). Alternatively, assuming closed-system degas-
sing and by coupling the measured surface gas emissions 
and melt inclusions volatile composition as proxy for the 
parental magma, the minimum  CO2 saturation pressure is 
estimated at 5.1±1.5 kbar (≥18 km depth) arguably driving 
magma extraction from the near-Moho reservoir (Halldórs-
son et al. 2022). Since the untreated clinopyroxene crystals 

analysed in this study yield similar magmatic water contents 
to those reported by Bindeman et al. (2022) from volcanic 
glasses, it is likely that they witnessed similar water vapour 
exsolution processes in the magma, prior to and during the 
eruption. Given the solubility of water in basaltic magmas 
at different pressures (Fig 7b), and the relatively low water 
content in the dehydrated Geldingadalir samples (0.04–0.13 
wt.%  H2O), we constrain the depth for water exsolution to 
the uppermost few hundreds to tens of metres below the 
surface.

The contribution of multiple enriched mantle source 
components, with variable compositions and densities, to 
the 2021 eruption (Bindeman et al. 2022; Halldórsson et al. 
2022), are expected to have been a source for variable, gen-
erally elevated volatiles (e.g.  CO2,  SO2,  H2O), compared to 
MORB-type magma compositions. These volatiles would 
have exsolved from the progressively over-saturated magma 
during storage and ascent, leading to nucleation of bubbles 
once the solubility curve for the various gas species is over-
stepped (Fig 7b). The vesicular, ascending magma would 
have been exposed to further decompression leading to a 
permeable gas flow that would allow additional volatiles 
to be released in the upper conduit system and for the gas 
phase to overtake the magma in the conduit (Burton et al. 
2007; Polacci et al. 2015). At Geldingadalir, this would be 
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Fig. 9  Aerial images of the main active crater at Geldingadalir. 
Extracted frames from video recording of the erupting crater on the 
8th of June 2021. The lava flow was roughly towards the south, and 
the images were acquired from south of the crater, at ~50m altitude, 

with the camera oriented northward, facing the main discharge direc-
tion. On the day of acquisition, the eruption was stable, with pulsat-
ing flows at regular intervals of 8–10 min on average.
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especially important, as the low water content would hinder 
saturation and exsolution in the deeper part of the system. 
Given the solubility of water in basaltic melts (Holloway and 

Blank 1994; Moore et al. 1998), the Geldingadalir magmas 
filling the upper conduits and vents would thus be prone to 
shallow bubble growth and coalescence, as they would only 
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Fig. 9  (continued)
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become over-saturated in water vapour at very high levels in 
the plumbing system (Figs. 7 and 9). As saturation and water 
exsolution would be restricted only to the top few hundred 

to tens of metres below the surface, it would have a direct 
effect on the volume of gas-charged, bubbly magma that 
filled the upper conduit and lava pond during the eruption. 

Fig. 9  (continued)
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The rhythmic periods of “building-up and overflow” of the 
vent are best explained by this model of vesicle growth of 
the magma entering the shallow conduits and bottom of 
the lava pond, triggering a sudden onset of water vapour 
released close to the surface, causing rapid volume increase 
and overflow (Polacci et al. 2015). Once the maximum over-
flow is reached, the intensity is expected to decrease, and 
as the magma within the system is drained and the upper 
conduit is recharged with new magma from below. The new 
magma would then experience similar decompression in the 
top few hundred to tens of metres below the surface, fol-
lowed by intense vesiculation as water vapour is exsolved, 
and in consequence, the magma-gas mixture volume would 
increase again leading to a new overflow. Although episodic 
release of  SO2 and  CO2 gas was recorded at the vents during 
the eruption period, the frequency was at significantly wider 
time intervals (the order of days) and is likely unrelated to 
the observed rhythmic overflows of the vent 5 of the 2021 
Geldingadalir eruption, at 10- to 20-min intervals (Fig. 9). A 
similar model is proposed by Eibl et al. (2022) based on seis-
mic data and direct observations of the 2021 Geldingadalir 
eruption. Magma rises, driven by vesiculation and degas-
sing, progressively intensifying until it reaches maximum 
fountaining (> 300m height) and lava outpouring. Once the 
peak has been reached, the intensity gradually decreases and 
the outgassed lava retreats into the shallow conduit system, 
leaving the crater in a state of rest, until vesiculation and 
degassing reach the critical point after-which a new episode 
of magma expansion and overflow begins (Eibl et al. 2022). 
Within this model and based on the estimated primary water 
content (up to 0.9 wt.%) and rate of degassing from our stud-
ied samples (74–94%), intense dehydration likely took place 
in the top 50 m of the conduit system.

Conclusions

Parental magmatic water contents can be derived from 
clinopyroxene crystals after experimental  H2-treatment 
despite magma degassing during eruption. The average 
water contents of parental magmas supplying the early 
phase (April 2 to 10 2021) of the Fagradalsfjall Fires 
eruption are between 0.65 and 0.86 wt.%  H2O, in agree-
ment with previous estimates for Icelandic subglacial 
volcanoes (Nichols et al. 2002). Furthermore, they are 
considerably higher than those obtained for Reykjanes 
Ridge or mid-Atlantic ridge basalts, but within the range 
obtained for Ocean Island basalts. The determined  H2O 
contents therefore probably reflect primary water con-
tents of enriched plume melts that fed the 2021 eruption.

Based on the magmatic water content calculated from rehy-
drated clinopyroxene (0.65–0.86 wt.%  H2O) and established 

basalt water solubility curves (Moore et al. 1998), we infer that 
water degassing of ascending magmas was restricted to the top 
few hundred metres below the surface. We therefore propose 
that repeated water vapour exsolution within the upper conduit 
system, that added a substantial gas volume to the deep-sourced 
magmatic  CO2 flux, was likely the cause for the rhythmic over-
flow observed in summer 2021.
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