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Abstract

The northeast rift zone of Tenerife (NERZ) presents a partially eroded
volcanic rift that offers a superb opportunity to study the structure and
evolution of oceanic rift zones. Field data, structural observations,
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isotopic dating, magnetic stratigraphy, and isotope geochemistry have
recently become available for this rift and provide a reliable temporal
framework for understanding the structural and petrological evolution of
the entire rift zone. The NERZ appears to have formed in several major
pulses of activity with a particularly high production rate in the
Pleistocene (ca. 0.99 and 0.56 Ma). The rift underwent several episodes
of flank creep and eventual catastrophic collapses driven by intense
intrusive activity and gravitational adjustment. Petrologically, a variety
of mafic rock types, including crystal-rich ankaramites, have been
documented, with most samples isotopically typical of the ‘‘Tenerife
signal’’. Some of the NERZ magmas also bear witness to contamination
by hydrothermally altered components of the island edifice and/or
sediments. Isotope geochemistry furthermore points to the generation of
the NERZ magmas from an upwelling column of mantle plume material
mixed with upper asthenospheric mantle. Finally, persistent isotopic
similarity through time between the NERZ and the older central edifices
on Tenerife provides strong evidence for a genetic link between
Tenerife’s principal volcanic episodes.

5.1 Ocean Island Rift Zones

Rift zones on ocean islands such as the Canary,
Hawaiian, and Cape Verde archipelagos are major
volcanic surface alignments associated with
intense dyke intrusions at depth. Volcanic rift
zones are extremely important in terms of Ocean
Island growth and evolution as discussed by Car-
racedo and Troll in Chap. 4. Firstly, rift zones
generally form prominent, major topographical
features on ocean islands as they concentrate vol-
canic activity, and thus control the distribution of
both volcanic hazards and natural resources. On
Tenerife (Fig. 5.1), for example, access to fresh
groundwater is aided by water tunnels (galerías)
constructed into the rift zone’s interior (Navarro
and Farrujia 1989). Finally, and perhaps most
importantly, Ocean Island rift zones control the
structure of a growing volcanic edifice, perhaps
even from their initial stages of growth, and thus
define the location of large-scale flank collapses,
which are particularly prominent on Tenerife
(e.g., Carracedo 1994; Walter and Troll 2003;
Carracedo et al. 2011; see also Fig. 5.1).

Ocean Island rift zones were initially recogni-
sed and described on the Hawaiian Islands (Fiske
and Jackson 1972; Swanson et al. 1976; Walker

1986, 1987, 1992; Dieterich 1988). Perhaps the
most significant progress in understanding Ocean
Island rift zone genesis and structural development
has been made through their study in the Canary
Islands (e.g., Carracedo 1975, 1979, 1994, 1996,
1999; Carracedo et al. 1992, 1998, 2001, 2007,
2011; Guillou et al. 1996; Walter and Schmincke
2002; Walter and Troll 2003; Walter et al. 2005;
Hansen 2009; Delcamp et al. 2010, 2012; Carra-
cedo and Troll, this volume). The Canary Islands
as a whole are especially valuable to the study of
rift zone development due to the fact that the rifts
are generally long-lived, dynamic, and conspicu-
ously large structures. The combination of rela-
tively low plume activity feeding the Canaries, low
velocity of the African Plate in comparison to, e.g.,
the Pacific Plate that underlies the Hawaiian
Islands, and a prolonged subaerial volcanic history
with the absence of late subsidence, gives rise to
long-lived ridges on the Canary Islands that are
prone to frequent recurring volcanic activity and
also to recurring volcanic failure (see Chap. 4 for
further discussion). Hence, the spatial circum-
stances particular to the Canary archipelago pro-
vide us with an outstanding and unique
opportunity to investigate rift processes in
immense detail and with as yet unparalleled tem-
poral resolution.
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5.2 Geology of the NERZ
and Research Developments

Various intervals of rift zone development are
represented in the Canary Islands. For instance, the
rifts of the younger western islands El Hierro and
La Palma are characteristic of the shield develop-
ment stage. The NW and NE rifts on Tenerife, on

the other hand, represent part of the more
advanced, post-erosional (rejuvenation) stage of
island growth (see Carracedo and Pérez-Torrado,
Chap. 2). The NERZ (Fig. 5.1) has been largely
inactive for thousands of years along most of its
length with only a single known historic eruption
in 1704–1705 A.D., which produced relatively
small volumes of lava (\3.5 9 106 m; Carracedo
et al. 2006). The products of this eruption are

Fig. 5.1 a Map of the Canary Archipelago, located off
the coast of NW Africa between magnetic anomalies S1
(175 Ma) and M25 (156 Ma) (Roeser 1982) with Tenerife
highlighted. b Simplified geological map of Tenerife
showing 1 the location of the shield basalt massifs Roque
del Conde (the Central Shield), as well as Teno, and
Anaga, 2 the three rift zones (thick dashed black and red
lines) and the collapse scars flanking the NERZ, 3 the Las

Cañadas caldera wall, and 4 the location of the Teide
Volcanic Complex at the junction of the three rift zones.
c Shaded relief map of the NERZ showing the distribution
of the investigated dykes along the rift (short red lines) and
the three collapse depressions flanking the ridge. The thick
black and white line is the main road TF-24, along which
there is good exposure of the NERZ dykes (see Fig. 5.2b).
(Image adapted after Deegan et al. 2012)

5 Pre-Teide Volcanic Activity on the Northeast Volcanic Rift Zone 77



restricted to the headwall of the Güímar landslide
scar (the Arafo volcano), and probably do not
reflect direct rift products themselves (cf. Longpré
et al. 2009). The protracted inactivity, coupled
with extensive erosion, and several giant landslide
events on either side of the rift, has created a dis-
sected anatomy of this oceanic rift system. This
situation allows for in-depth study of the rift’s
internal structure, especially the complex network
of dykes that would otherwise not be generally
accessible, but which is available in the NERZ for
high resolution structural and geochemical studies
(Fig. 5.2) summarised in this chapter.

The NERZ is a ca. 30 km long ridge that extends
from the central edifice of Las Cañadas at its SW end,
to the Anaga massif at its NE termination (Fig. 5.1).
The overall height of the NERZ decreases from the
centre of the island to the northeast (e.g., Izaña,
2,386 m above sea level [asl]; Ayosa, 2,078 m asl;
Joco, 1,956 m asl; Gaitero, 1,748 m asl). The ridge-
like topography of the NERZ has been shaped by
three successive mass wasting events along its flanks.
From aerial view, these landslide scars can be seen as
depressions on both sides of the ridge (Fig. 5.1). The
Micheque and Güímar landslides were roughly
coeval, taking place at ca. 0.83 Ma, while the more
recent La Orotava landslide occurred at 0.56 Ma
(Figs. 5.1 and 5.2; Carracedo et al. 2011 and refer-
ences therein).

Although the NERZ is one of the pronounced
geological features on Tenerife, its challenging com-
plexity has prevented intense study so far. Recent
researchefforts tounravel thecomplexityof theNERZ
involved systematic and in-depth mapping of the rift;
structural analysis of over 400 dykes, including dykes
exposed within the Micheque, Güímar, and La Orot-
ava collapse scars and dykes in water tunnels (gale-
rías); and investigations into dyke petrography,
morphology, thickness, orientation, and their internal
features (e.g., Fig. 5.3; Delcamp et al. 2010, 2012).
High spatial resolution sampling of dykes along
roadcuts and from galerías (see Fig. 5.1) has also been
carried out for (1) thin-section preparation and petro-
graphic analysis; (2) paleomagnetic measurements,
with samples for this purpose collected using a por-
table gasoline powered drill (Fig. 5.2; full analytical
details can be found in Delcamp et al. 2010); (3)
40Ar/39Ar age determination (see Delcamp et al.
2010); and (4) geochemical analysis, including major
and trace elements of over 80 dyke samples following
the method in Abratis et al. (2002). A sub-set of these
80 samples was analyzed for stable (oxygen) isotopes
following the procedure given in Vennemann and
Smith (1990) and Fagereng et al. (2008). Finally, a
selection of these was further analysed for combined
trace and rare earth element (REE) and Sr–Nd–Pb
isotopes. Full analytical details, including measure-
ments of internal and external standards, and the entire

T-PV
complex

NERZ

La Orotava valley

(a) (b)

(c)

Fig. 5.2 a Photograph showing the roughly linear ridge
of the Northeast rift zone (NERZ) of Tenerife, and the
Teide-Pico Viejo (T-PV) complex, which sits at the
south-westernmost projection of the NERZ. La Orotava
collapse scar can be seen to the NW of the rift. b Field

appearance of dykes intruded along the rift exposed
along the main road TF-24. c Example of a dyke outcrop
that has been drilled to retrieve fresh samples of the dyke
interior for palaeomagnetic and geochemical studies
(hammer to top right of image for scale)

78 V. R. Troll et al.



geochemical data set can be found in Deegan et al.
(2012).

The results of this multi-disciplinary effort
are synthesised in this chapter and provide
insights into (1) the structural development of
the NERZ, (2) the magmas feeding the NERZ
plumbing system, and (3) the underlying mantle
sources to the NERZ. This research approach
thus provides a perspective from source pro-
cesses to surface expression for oceanic rifts.

5.3 Field Occurrence
and Petrography of the Dykes

The dykes exhibit a large degree of variability in
terms of their field occurrence, even on the scale
of a single intrusion. Thickness, orientation, and
texture are frequently found to change, related to,
e.g., changes in the competence of the host
lithology (cf. Gudmundsson 2002) as can be seen

W

N060-90

N100-40S

N000-80W

lapilli lava flow

lava flow

tension-
gash

N020-70E

N020-90
tension-gashes

lava flow

NE SW E W

80cm

90cm

N000-90

N150-80Wlava 
flow

basal 
breccia

tension
-gash

colluvions
/ basal 
breccia lava flow

basal
breccia

NW SE

N045-90

hammer

(a)

(c) (d) (e)

(b)

NE SW

upward 
magma flow

SSW NNE

rounded

elongated

“V” pattern

(f) (g)

Fig. 5.3 Photographs of the field appearance of repre-
sentative dykes of the NERZ with variations in orien-
tation (strike, dip or both), thickness, and texture
observed on the single intrusion scale. Images from
Delcamp et al. (2012). a, b Dyke orientation is seen to
change at the transition between surrounding lapilli and a
lava flow. c Dyke showing a change in orientation within
a lava flow unit. d Dyke showing a change in orientation

at the transition between surrounding basal breccia and a
lava flow. e Variation in dyke thickness due to a change
in the host-rock lithology. The dyke is thicker within the
basal breccia (lower part, low competence layer) than
within the lava flow (upper part, high competence layer).
f Example of vesicle types and distribution in a dyke
interior. g Example showing the direction of magma flow
as recorded by vesicle orientation
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in Fig. 5.3. In particular, where there are two host
lithologies in contact, the intruding dyke under-
goes a structural change at the contact point
(Fig. 5.3). Other notable variations on the intru-
sion scale include occasionally observed vesicu-
lar and brecciated dyke interiors, locally
concentrated flow lobes, folding, and small-scale
intrusive ‘‘fingers’’ into non-cohesive country

rock (cf. Mathieu et al. 2008; Delcamp et al.
2012).

The mineralogy and petrography of the
dykes, established both in the field, based on
hand specimen scale observations, and using
thin section microscopy (Fig. 5.4; Deegan et al.
2012; Delcamp et al. 2012) revealed recurring
textures and the mineralogy of the dykes was
used to characterise several petrographic groups:
1. Aphyric group. For the most part phenocryst

free or only weakly-phyric. Occasional small
crystals (\1 mm) of pyroxene and feldspar
are observed in a micro- to cryptocrystalline,
sometimes glassy, groundmass. Micro-
phenocrysts generally constitute less than
5 % of the rock volume.

2. Feldspar-rich group (‘‘fsp’’ dykes, Fig. 5.4a).
Feldspar is the dominant phenocryst phase,
occupying up to 50 % of the rock volume.
Rare clinopyroxene, olivine, and Fe–Ti oxide
crystals may be present with each constitut-
ing less than 10 % of the rock volume.

3. Feldspar- and pyroxene-rich group
(‘‘fsp ? px’’ dykes, Fig. 5.4b). Feldspar and
pyroxene are the main phenocryst phases,
occupying up to 50 % of the rock volume, with
feldspar generally more abundant than pyrox-
ene. Minor olivine and Fe–Ti oxides may be
present at up to 10 % of the rock volume.

4. Ankaramite group (‘‘ankara’’, Fig. 5.4c).
Olivine and pyroxene phenocrysts (up to
2 cm across) occupying between 40 and
60 % of the rock volume. Minor phenocryst
phases also include amphibole and Fe–Ti
oxides. Ankaramite groundmass ranges from
cryptocrystalline to Fe–Ti oxide-rich.

5. Olivine- and pyroxene-rich group
(‘‘ol ? px’’ dykes, Fig. 5.4d). Composed of a
similar mineral assemblage to the ankaramite
group, but with crystal contents ranging from
5 to 35 % of the rock volume. Phenocrysts
are a few mm in size, making them sub-
stantially smaller than those in the ankara-
mites. The groundmass is generally rich in
plagioclase and Fe–Ti oxides.

6. Pyroxene-rich group (‘‘px’’ dykes, Fig. 5.4e).
Clinopyroxenes are the major phenocryst
forming phase occupying between 5 and 30 %

1mm
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1mm

b

1mm
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fsp

px

px

ol

px ol

px
hbl

(a) Fsp

(b) Fsp+px

(c) Ankara

(d) Ol+px

(e) Px

Fig. 5.4 Representative photomicrographs of the petro-
graphic dyke groups (aphyric types not shown). a Feld-
spar-phyric group, b Feldspar and pyroxene-phyric group,
c Ankaramite group, d Olivine and pyroxene-phyric
group, and e Pyroxene-phyric group. Plane polarized view
is shown on the left and cross polarized view on the right.
Abbreviations: Fsp = feldspar, px = pyroxene,
ol = olivine, ankara = ankaramite, hbl = hornblende.
Figure modified from Delcamp et al. (2012)
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of the rock volume. Minor phenocryst phases in
this group include amphibole and Fe–Ti oxides
at usually less than 10 % of the rock volume.

5.4 Structural Evolution
of the NERZ

Extensive field work has helped to gain insight
into the structural development and organisation
of the NERZ, in particular the link between
dynamic rift-zone development and giant col-
lapse events. In this context, several models
have previously been discussed to explain rift
zone organisation, as outlined in Chap. 4. The
major finding arising from the field study pre-
sented in Delcamp et al. (2012) is that dyke
orientation in the NERZ is not simply parallel to
the rift axis or the collapse embayments but is
frequently oblique to the walls of the main col-
lapse scars (Fig. 5.5). This contrasts most pre-
vious observations from nature and experiments
that document dykes parallel to the rift axis and
the walls of collapse scars (e.g., Acocella and
Neri 2009). The oblique dyke geometry of the
NERZ is interpreted as being caused by flank

spreading and associated creep during succes-
sive pulses of emplacement of dykes and other
shallow intrusions. Flank spreading would ini-
tially stabilise a rift, but after a critical amount
of magma supply a collapse event would be
triggered by continued intrusive activity. A
small, but detectable change in dyke orientation
on the rift axis seems to be also associated with
the major landslides, implying that rift zones do
indeed change dynamics and orientation due to
external forces such as gravity-driven flank
collapses (cf. Walter and Troll 2003; Walter
et al. 2005; Carracedo and Troll, this volume).
This result serves to change our perception of
Ocean Island rifts from simple parallel align-
ments of intrusions to a complex and dynamic
feeder system that develops in response to
internal as well as external influences.

5.5 Magnetic Studies and Ages
of the Dykes

Paleomagnetic studies of the NERZ were carried
out by Carracedo et al. (2011) and Delcamp
et al. (2010) to add temporal constraints to the

Fig. 5.5 Rose diagrams
showing a large range of
dyke orientations observed
in the various portions of
the NERZ. Note that dyke
orientation along the rift is
for most intrusions non-
parallel to the rift axis. See
text for details
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evolutionary history of the rift. The NERZ
shows a range in magnetic polarities, with the
dykes spanning at least two polarity intervals,
i.e., the Matuyama (reverse) and Bruhnes (nor-
mal) chrons (Figs. 5.6 and 5.7). The paleomag-
netic data hence points to the NERZ as being a
relatively long-lived system with, at times, a
considerable magma supply.

New 40Ar/39Ar ages reported in Carracedo
et al. (2011) and Delcamp et al. (2010) show that
intrusive activity on the NERZ is characterised
by a semi-continuous magma supply but with
swarms of dykes of various petrographic types
being intruded close in time, i.e., in pulses.
A peak in magma supply during the mid-
Pleistocene is thought to have led to flank
deformation and the subsequent collapses of the
Micheque, Güímar, and La Orotava edifices
(Carracedo et al. 2011). The paleomagnetic data
also record a 26� clockwise vertical-axis rotation
of the sampled rift core. Delcamp et al. (2010)

interpret this as a result of a local volcano-tec-
tonic response to strike-slip movements that
occurred successively on either side of the rift
axis due to flank instabilities. Central areas on
the rift may thus experience near surface rota-
tion—a feature also reported from other Canary
Islands, such as El Hierro (e.g., Széréméta et al.
1999). It is noteworthy that the petrographic
groupings of dykes do not correspond to specific
polarities nor are they spatially segregated
(Fig. 5.6), which suggests that the various pet-
rographic groups of dykes were not intruded in
distinct packages, but instead semi-simulta-
neously over the lifetime of the rift. A scenario
involving a number of smaller storage and fee-
der reservoirs is hence likely to have fed the
near-surface dyke intrusions, causing distinct
petrographic types to occur along the rift system
at the same time. The NERZ thus represents a
highly dynamic and changeable geological and
geo-morphological environment. Volcanic rift
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zones such as the NERZ on Tenerife are thus not
static structural features. In fact, they are char-
acterised by concentrated pulses of active
growth and giant destructions that result in
measurable geometric re-arrangements.

5.6 Petrogenesis of the NERZ
Magmas

The full geochemical and isotope data available
for the dykes of the NERZ is reported in Deegan
et al. (2012), with an overview provided here.
The NERZ dykes can be classified as alkali
magmas, similar to the other magma suites on
Tenerife, such as the Teide-Pico Viejo complex
(Fig. 5.8). Although the dykes of the NERZ
display wide petrographic variability, most
classify as basanites based on their major ele-
ment composition (Fig. 5.8). The exceptions are
crystal-rich ankaramite dykes, which plot as
extremely mafic magma types due to their high
content by volume of Mg-rich olivine and
pyroxene (cf. Longpré et al. 2009).

Major element variation diagrams for the com-
plete dyke suite display linear trends that are char-
acteristic of fractional crystallisation of a mineral
assemblage including olivine, clinopyroxene, pla-
gioclase, Fe–Ti oxides, and apatite (Fig. 5.9).
Magnetite has previously been identified as the

major Fe–Ti oxide phase in the dykes using reflected
light microscopy (Fig. 5.9; Delcamp et al. 2010),
which explains the kink in TiO2 with increasing
degrees of differentiation as magnetite fractionates.
Trace element variations in the dykes are also
broadly consistent with fractional crystallisation.
Decreasing Sc, Ni, and Co with decreasing MgO
reflects crystallisation of olivine and pyroxene (see
Deegan et al. 2012; Fig. 5.9e, f). Fractional crystal-
lisation was quantified by applying least squares
minimisation to the aphyric samples, which most
closely represent liquid compositions. The broad
trends in the major element data can be readily
explained by removal of plagioclase, clinopyroxene,
Fe–Ti oxides, olivine, and apatite in the proportions
41:25:18:11:5, respectively (Fig. 5.9).

While the major and trace element variability
in the dykes is largely controlled by fractional
crystallisation, the isotope data suggest addi-
tional magmatic processes to have taken place.
One key process which could account for the
isotope variations in the dykes is crustal con-
tamination of some of the rift zone magmas by
hydrothermally altered components of the island
edifice and/or oceanic sediments (Fig. 5.10).

Crustal contamination of Ocean Island mag-
mas has traditionally been thought of as mini-
mal. This is due to the relatively thin underlying
oceanic crust and the assumption that magma
injected into basaltic crust would be of similar
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enough composition so that contamination
would in effect be absent. However, in practice,
crustal contamination by various components of
the ocean crust, overlying sediments, and the
island edifice itself is becoming increasingly
recognized in Ocean Island settings (e.g., Clague
et al. 1995; Bohrson and Reid 1997; Garcia et al.
1998; Kent et al. 1999; Harris et al. 2000; Wolff
et al. 2000; Gurenko et al. 2001; Troll and
Schmincke 2002; Hansteen and Troll 2003;
Gaffney et al. 2005; Legendre et al. 2005;
Wiesmaier 2010). On Tenerife, the most likely
contaminants are the plutonic rocks of the island
core and variably altered shallow felsic materi-
als, which display a large compositional diver-
sity (e.g., Palacz and Wolff 1989; Wolff et al.
2000; Wiesmaier et al. 2012).

Oxygen isotope analysis of the dykes of the
NERZ indicates that some dyke intrusions bear
witness to low temperature alteration, i.e., those
with coupled high d18O and H2O wt. % values
(Deegan et al. 2012). A number of dykes with
regular H2O values still show d18O values that are
elevated relative to the mantle range, which

cannot be readily explained by closed-system
fractional crystallisation or post-eruptive alter-
ation (see the Rayleigh fractionation curve on
Fig. 5.10; and also Sheppard and Harris 1985).
Mixing models suggest that some of the vari-
ability in the NERZ data may be explained by
uptake of 18O from a combination of oceanic
sediment and hydrothermally altered material
from the island edifice (Fig. 5.10). Similarly,
minor variation in 87Sr/86Sr and 143Nd/144Nd
values, that trend away from the upper mantle
range and towards more crustal values, can be
explained by minor interaction between some
batches of NERZ magma with hydrothermally
altered island edifice material (Fig. 5.11; Deegan
et al. 2012). This is plausible, given that assimi-
lation of such hydrothermally altered felsic
material has been recognized previously for
Tenerife (e.g., Palacz and Wolff 1989; Wolff et al.
2000; Wiesmaier 2010). Altered felsic rocks
probably occupy a substantial portion of the sub-
volcanic pile in which the NERZ magmas resided
and into which the NERZ dykes were intruded
and would hence have been readily available for
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of the Northeast rift zone (NERZ) with boundaries drawn
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and lavas from the NERZ after Ablay et al. (1998) and
Neumann et al. (1999). Figure modified after Deegan
et al. (2012)
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interaction. Note that assimilation of ocean sed-
iments and/or hydrothermally altered ocean crust
and island edifice has been discussed in the con-
text of several of the Canary Islands, not only
Tenerife (e.g., Marcantonio et al. 1995; Thirwall
et al. 1997; Gurenko et al. 2001; Troll and
Schmincke 2002; Hansteen and Troll 2003;
Aparicio et al. 2006, 2010; Troll et al. 2012). The
effects of these late stage processes need to
therefore be accounted for before attempting to
define the mantle processes giving rise to the
primary magmas of the NERZ.

Concerning magma generation beneath the
NERZ, the Pb isotope data presented in Deegan
et al. (2012) provide insights into the nature of the
mantle source and, in combination with magnetic
polarity data (Delcamp et al. 2010), the genetic
ties between various stages in island growth. Lead
isotopes are not expected to be overly sensitive to

contamination by hydrothermally altered island
edifice since Pb does not appear to undergo iso-
topic exchange during alteration (Cousens et al.
1993; Gaffney et al. 2005) and hence they are
particularly useful for the NERZ. Most of the Pb
isotope data for the NERZ plot below but roughly
parallel to the Northern Hemisphere Reference
Line (NHRL, Hart 1984) which represents a
mixture between depleted upper mantle (DMM)
and a mantle that involves an ancient subducted
component (HIMU) (Fig. 5.12). In this context,
the NERZ Pb isotope data are consistent with
derivation from a young HIMU source, in which
the subducted ocean crust component has resided
less than 1.5 Ga in the source region (Thirlwall
1997; Geldmacher and Hoernle 2000, 2001;
Simonsen et al. 2000; Gurenko et al. 2009). Two
of the dykes plot above the NHRL on Fig. 5.12,
which, in combination with their elevated d18O
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element variation diagrams
for dykes of the NERZ.
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values, points to more intense sediment contam-
ination of these two samples. Discarding samples
that show evidence for crustal contamination,
Strontium-Neodymium isotopes are consistent
with DMM ? HIMU mantle mixing (Deegan
et al. 2012).

Using magnetic polarity data obtained for
some of the dykes (Delcamp et al. 2010), we can
place temporal constraints on the isotope data.
As can be seen in Fig. 5.12, the Pb isotope
compositional range of the NERZ has been lar-
gely unchanged through most of its evolution,
i.e., the old galería dykes and the dykes of
normal, reverse, and unknown polarities span
the entire NERZ range, and do not form isoto-
pically distinguishable groups. This observation
suggests that the mantle source feeding the
NERZ has been isotopically constant through its
lifetime. Moreover, of the three shield-stage
volcanoes on Tenerife (Teno, Anaga, and Roque
del Conde), the NERZ is isotopically most

similar to the old central edifice of Roque del
Conde (Fig. 5.12). It therefore appears likely
that the NERZ had a different ‘‘mantle highway’’
than both Teno and Anaga, and instead formed
as an extension of the Central Shield, gradually
growing toward what is now Anaga in the NE
(Fig. 5.1, see also Guillou et al. 2004; Carracedo
et al. 2011).

The Pb-isotope signature of the NERZ is also
similar to the Las Cañadas volcano (Simonsen
et al. 2000) suggesting that they both shared a
similar parental source too. This is not surprising
as the Pleistocene NERZ was emplaced and
erupted coeval to the central Las Cañadas volcano
(e.g., Ancochea et al. 1990; Bryan et al. 1998;
Edgar et al. 2002; Carracedo et al. 2011). The
relatively young Teide-Pico Viejo (T-PV) com-
plex, however, extends towards less radiogenic
206Pb/204Pb—207Pb/204Pb values, which, coupled
with high 143Nd/144Nd values, suggests that this
most recent phase of magmatism on Tenerife had
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a slightly different mantle source with a greater
input of DMM material (i.e., a lower proportion
of a deep HIMU-plume component).

The persistence of a HIMU-dominated mantle
source throughout the lifetime of the NERZ can
be interpreted in the context of the ‘‘blob’’ model
for the Canary Islands (Hoernle et al. 1991;

Hoernle and Schmincke 1993). This model
involves formation of a zone of discrete HIMU
mantle blobs at the top of a mantle plume beneath
the Canaries. These blobs become entrained with
upper asthenospheric mantle (DMM), giving rise
to the mixed DMM ? HIMU mantle isotope
signal of the Canaries. We suggest that a large

Fig. 5.13 Schematic
model of Canary Island rift
evolution (after Carracedo
et al. 2011). Note that the
rift evolution proceeds
until high intrusive activity
causes flank collapses to
occur. Following such a
catastrophic collapse, the
plumbing system needs to
readjust, leading to
structural and petrologic
modifications of the rift
(cf. Longpré et al. 2009;
Manconi et al. 2009;
Delcamp et al. 2010, 2012;
Carracedo et al. 2011)

88 V. R. Troll et al.



column of HIMU-type mantle, or a quick suc-
cession of compositionally similar HIMU-blobs,
occupied the melting zone beneath central Ten-
erife from the Miocene to Pleistocene. This was
possibly accommodated for such a long period of
time by slow plate movement beneath the
Canaries (*10 mm yr-1; Hoernle and
Schmincke 1993 and references therein). The
recent T-PV complex appears to reflect a lesser
influence of the HIMU blob and greater incor-
poration of DMM material, possibly due to an
increase of edge-DMM entrainment into the
melting zone and thinning of the blob(s) with time
(see Deegan et al. 2012).

5.7 Unravelling the NERZ
from Source to Surface

The recent intense and multi-disciplinary
research efforts to unravel the structural and
petrogenetic history of the NERZ underscores
the premise that ocean island rift zones are long-
lived, complex, and dynamically evolving sys-
tems. They can neither be thought of as a simple
parallel arrangement of dykes and volcanic vents
along fractures, nor as purely reflecting long-
lived ocean crust fractures. Indeed, it has been
shown that the NERZ is a dynamic morpholog-
ical environment, which developed from a series
of intrusive pulses interspersed with periods of
relative quiescence, but also with flank creep,
and particularly with collapse events that chan-
ged the structural arrangement of dyke intru-
sions and eruptive sites repeatedly (e.g.,
Delcamp et al. 2010, 2012; Carracedo et al.
2011; and Carracedo and Troll, this volume; see
also Fig. 5.13 for a summary).

In terms of petrogenesis, the history of the
NERZ began with magma generation from a
long-lived HIMU-dominated mantle source.
Following segregation from the mantle region,
many of the NERZ magmas underwent frac-
tional crystallisation, and some underwent
assimilation of ocean sediments and hydrother-
mally altered island edifice material. Isotope
geochemistry places the initiation and growth of
the NERZ into the wider geological context of

Tenerife. The data discussed in this chapter, in
conjunction with geochronological evidence
(Carracedo et al. 2011), support a model of the
NERZ magmas being related to the magma
source of the central edifice (Roque del Conde
and Las Cañadas volcanoes), which implies that
the NERZ likely originated from the central part
of Tenerife to eventually link up with the Anaga
edifice in the NE.
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