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Abstract

Initially recognised in the Hawaiian Islands, volcanic rift zones and
associated giant landslides have been extensively studied in the Canaries,
where several of their more significant structural and genetic elements
have been established. Almost 3,000 km of water tunnels (galerías) that
exist in the western Canaries provide a unique possibility to access the
deep structure of the island edifices. Recent work shows that rift zones to
control the construction of the islands, possibly from the initial stages of
island development, form the main relief features (shape and topogra-
phy), and concentrate eruptive activity, making them crucial elements in
defining the distribution of volcanic hazards on ocean islands.

4.1 Introduction

Rift zones constitute the most pronounced and
persistent structures in the development of oce-
anic volcanic islands because they: (1) control the
construction of the insular edifices, possibly from
the initial stages; (2) form the main relief features
(shape and topography); (3) concentrate eruptive
activity; (4) frequently play a key role in the
generation of flank collapses and the catastrophic

disruption of well-established volcano plumbing
systems; (5) are crucial structures in the distri-
bution of volcanic hazards; and (6) condition the
storage of natural resources, such as groundwater
(Navarro and Farrujia 1989).

Although rifts were initially recognized on
the Hawaiian Islands (Fiske and Jackson 1972;
Swanson et al. 1976; Walker 1986, 1987, 1992;
Dieterich 1988), a good part of the progress
made in understanding their genesis and struc-
ture has been achieved through their study in the
Canary Islands (Carracedo 1975, 1979, 1994,
1996, 1999; Carracedo et al. 1992, 1998, 2001,
2007, 2011; Guillou et al. 1996; Walter and
Schmincke 2002; Delcamp et al. 2010).

Compared with those of the Hawaiian
Islands, the rifts of the Canaries are considerably
longer lasting, exert greater overall control on
the construction of the islands, and present more
pronounced elements of relief. The lower mag-
matic activity of the mantle plume or hotspot

J. C. Carracedo (&)
Departamento de Física (GEOVOL), Universidad de
Las Palmas de Gran Canaria, Las Palmas de Gran
Canaria, Canary Islands, Spain
e-mail: jcarracedo@proyinves.ulpgc.es

V. R. Troll
Department of Earth Sciences, CEMPEG, Uppsala
University, Uppsala 75236, Sweden
e-mail: Valentin.Troll@geo.uu.se

J. C. Carracedo and V. R. Troll (eds.), Teide Volcano, Active Volcanoes of the World,
DOI: 10.1007/978-3-642-25893-0_4, � Springer-Verlag Berlin Heidelberg 2013

57



that has generated the Canaries produces much
lower eruptive rates (Geldmacher et al. 2001).
This favours higher-aspect-ratio rift zones by
accumulation of relatively short flows, promot-
ing the growth of prominent ridges in the relief
of these islands (Fig. 4.1). The very low drift
velocity of the African plate and the apparent
lack of significant subsidence of the Canaries
allow for long periods of subaerial activity of the
islands (at least 22 My), with corresponding
long-lasting rifts that frequently display recur-
rent activity (Carracedo et al. 1998, 2011).

4.2 Oceanic Rift Zones. What are
They and What Do They
Represent?

Elongate zones where eruptive vents concentrate
to form ridges are common and very pronounced
features of oceanic volcanoes. Where erosion has
incised sufficiently deeply into these features,
their internal structure appears as a dense swarm
of dykes broadly parallel to the axis of the ridge,
forming ‘‘coherent intrusion complexes’’
(Walker 1992) or ‘‘rift zones’’ (Fiske and Jackson
1972; Carracedo 1975, 1994; Swanson et al.
1976; Wyss 1980; Stillman 1987). This swarm of
dykes generally shows a gaussian distribution,
with the intrusion density falling rapidly to near
zero at the margins of the complexes. A similar
pattern is apparent in the distribution of eruptive
vents in the ridges (Fig. 4.2).

A high concentration of dykes in the rift zones
was first deduced by MacFarlane and Ridley
(1968) from conspicuous gravity ridges in the

Bouguer anomaly map of Tenerife (Fig. 4.3).
According to these authors, the growth of the
island was largely controlled (both subaerial and
submarine parts) by dyke injection along three
major rift zones, with angles of about 120�
between them. This idea was also applied by
Macdonald (1972) to explain the ground plan,
shape and internal structure of the Hawaiian
shields.

Detailed studies of these features have been
carried out on the Hawaiian volcanoes since the
1960s (Macdonald 1965; Fiske and Jackson
1972; Macdonald 1972; Swanson et al. 1976;
Walker 1986, 1987, 1992; Dieterich 1988).
Eventually, Walker (1992) defined rift zones as
the surficial expression of vents and eruptive
sites fed by dyke complexes at depth, pointing
out that these structures may be an invariable
characteristic of ocean volcanoes.

A significant advancement in the understand-
ing of oceanic rifts has been attained in the
Canary Islands, particularly on El Hierro, La
Palma and Tenerife from the 1990s onward
(Carracedo 1994, 1996, 1999; Guillou et al. 1996;
Carracedo et al. 1999, 2007, 2011; Gee et al.
2001; Walter and Schmincke 2002; Walter and
Troll 2003; Walter et al. 2005; Delcamp et al.
2010). This work took advantage of the numerous
water tunnels in Tenerife and La Palma used for
groundwater mining (locally called ‘‘galerías’’,
2 9 2 m and several kilometres long, with a
combined length for both islands exceeding
3,000 km). These galerías facilitate access to the
deep structure of the rift zones, providing a
unique opportunity for direct observations and
sampling (see Fig. 4.3 in Carracedo 1994).

Fig. 4.1 Panoramic view from the top of Pico Viejo Volcano onto the North West Rift Zone of Tenerife, an excellent
example of the evolution of a recent volcanic rift. The Teno Miocene Shield outcrops in the far distance (about 20 km)
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The Taburiente shield and Cumbre Vieja
Volcano, both on the island of La Palma, are
end-members in the evolutionary stages of rift

zones. There, an old and extinct (Plio-Pleisto-
cene) deeply eroded dyke complex (Taburiente),
and a recent (\125 ky), active rift zone (Cumbre
Vieja) make up the key architectural elements of
the island. The latter allows observation of the
surface distribution of eruptive vents in these
situations, and their main eruptive facies (1 in
Fig. 4.4). This comprises a volcanoclastic facies
(Fig. 4.4) at the central axis of the rift, and a lava
facies (lf) at the flanks of the structure. Deeper in
the rift zone, there appears to be a dense group
of dykes, oriented approximately along the rift
axis (2 in Fig. 4.4). These dykes are the conduits
feeding the eruptive vents of the rift, although
part of them probably never reaches the surface
(Gudmundsson et al. 1999). The internal orga-
nisation of the dyke complex can be observed at
the floor of the Caldera de Taburiente, where a
lateral collapse exposed the core of the shield
(3 in Fig. 4.4). The root of the dyke complex is

TENERIFE
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HAWAII (MAUNA KEA)
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LA PALMA (CUMBRE VIEJA)

Submarine
prolongation

Submarine
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Fig. 4.2 Concentration of
Quaternary eruptive
centres in Tenerife, El
Hierro, La Palma (Cumbre
Vieja), and Hawaii (Mauna
Kea). Mauna Kea data
from Porter (1972)

Fig. 4.3 Bouguer anomaly map of Tenerife showing a
three-pointed star shape (from MacFarlane and Ridley
1968)
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formed by a plexus of mafic plutonics and
cumulates related to the magma chambers and
pockets that supply the overlying rift eruptions.

Repetitive injection of blade-like dykes pro-
gressively increases the anisotropy of the com-
plex, forcing new dykes to wedge their path
parallel to the intrusions (like a knife between
the pages of a book, Fig. 4.5). If this process is
sustained and if injections are sufficiently fre-
quent, parts of the rift zones may remain hot
(thermal memory) to preferentially guide the
path of successive intrusions (e.g., Vogt and
Smoot 1984). However, intrusion can only

progress in a dyke complex if the structure can
accommodate fresh injections. Since repetitive
intrusion would progressively increase com-
pressive stresses, new injections can only occur
if either flank of the rift zone is free to move
apart (see Fig. 4.5). Therefore, extensional for-
ces add up in growing rift zones and eventually
reach a critical rupture threshold that can trigger
massive landslides.

4.3 Development of Rift Zones

Rifts in ocean-island settings can represent the
surface expression of initial plume-related frac-
turing, in response to vertical upward loading
(MacFarlane and Ridley 1968; Wyss 1980; Lu-
ongo et al. 1991; Carracedo 1994, 1996) and/or
extensional fissures due to volcano instability
and spread, which develop once a volcano has
grown to a certain height and instability (Walter
and Troll 2003; Walter et al. 2005; Delcamp
et al. 2010, 2012).

Despite advances in the understanding of
volcano deformation, it remains unclear how
particular rift zones develop. Fractures and rift
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Fig. 4.4 Anatomy of
oceanic rift zones: Cumbre
Vieja, La Palma. The
successive layers show the
internal structure of rift
zones, from the tight
cluster of eruptive vents at
the surface of the ridge, to
the dyke swarm and the
cumulate and plutonic
rocks in the deeper part of
the structure
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Fig. 4.5 In triaxial rift zones, two of the three arms are
usually more active, the third acting as a buttress.
Repetitive injections into the active rifts force the
enclosed block between these rift arms outwards oppos-
ing the buttress and, eventually cause collapse
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zones in Tenerife have repeatedly developed in
triaxial patterns. These triple-armed rifts are
thought to result from magmatic doming, and
thus slight upward bending of the crust (Carra-
cedo 1994), or gravitational spreading effects
(Walter 2003; Walter and Troll 2003; Walter
et al. 2005). Several such ‘‘triaxial rift zones’’
exist on the island (as also on El Hierro), some
of which were active simultaneously.

Endogenously driven mechanisms are
thought to play a major role in establishing axial
volcano architectures. Plumes typically cause
uplift that ruptures the rigid oceanic plate along
three rifts meeting at triple junctions. Com-
monly, two of these rifts become a plate
boundary (either a ridge or a ridge/transform)
while the third does not spread and becomes a
failed arm. A similar mechanism was postulated
by D’Albore and Luongo (2009) and Luongo
et al. (1991) for the tectonic structures of the
Neapolitan area, with the Phlegraean Fields
occupying the centre of a triple junction gener-
ated by a rising crustal tumescence (a plume).
The regular triple-armed junctions and triaxial
rift zones on volcanoes would then result from
the least-effort fracturing of the brittle crust at
120� angles (Luongo et al. 1991; Carracedo
1994, 1996). This least-effort model (Fig. 4.6) is
considered to explain (a) the aligned concen-
tration of eruptive sites on the Canaries (Tene-
rife, El Hierro and La Palma), (b) the longevity
and direction of rift zones, and (c) the genesis of
volcano sector collapses located in-between
2–120� rift arms (Carracedo 1994, 1996). In this
model, the rift zones are thought to have initi-
ated early in the history of the islands and form
their deep inner structure.

However, important objections to this model
have been raised. If triaxial rift zones developed
simultaneously on particular islands (e.g., Ten-
erife, Hawaii) the location of the centres of those
rift systems should be sufficiently distant from
each other considering the highly viscous
relaxation behaviour of the upper mantle and
flexure wavelengths of the crust (Watts and
Masson 2001). If Tenerife shield volcanoes
(Teno, Anaga and Central shields) are thought to
be triaxial structures, they are probably located

too close to one another to meet those conditions
(Walter and Troll 2003).

An alternative process is that flank deforma-
tion is caused by rifting, once a volcano
becomes sufficiently unstable for dyke intrusions
to force the flanks of the volcano to spread and
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Fig. 4.6 Model proposed by Carracedo (1994, 1996)
linking volcanic rift zones and landsliding in the Canary
Islands. Three-armed rifts, spaced at *120�, seem to be
the naturally preferred configuration, as in the case of El
Hierro and Tenerife. This architecture is thought to be a
response to least-effort fracturing. The resulting three-
sided base pyramidal edifice geometry may be further
enhanced by landsliding between the rift arms, propa-
gating perpendicular to the rift direction
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creep seaward (McGuire et al. 1990; Elsworth
and Voight 1995; Iverson 1995; Elsworth and
Voight 1996; Delcamp et al. 2010). Therefore,
the question arises whether rifting is a conse-
quence of flank deformation, or rifting causes a
flank to deform. Both models (a and b in
Fig. 4.7) have a completely different initiation,
but the final results are similar. Therefore,
multiple rift systems may develop differently.
Triple-armed rift zones can result from the least-
effort fracturing of the brittle crust (see a in
Fig. 4.7), at the initial stages of development of
a particular island (e.g., the Central Shield of
Tenerife) where plume-related or oceanic frac-
tures may provide important magma pathways
(e.g., Carracedo 1994; Geyer and Martí 2010;
Carracedo et al. 2011). Alternatively, ridge-like
volcanoes have been shown to develop a third
arm once the edifice has matured and developed
instabilities. Then, a more passive rift arm may
open opposite the collapse scar due to exten-
sional stresses (e.g., Walter and Troll 2003;
Walter et al. 2005).

Observations on Tenerife and El Hierro
shields as well as in analogue gelatine experi-
ments have shown that slight eccentricity of the
creeping sector focuses dyke intrusion along two
curved axes tangential to the stable/unstable
interface. In contrast, strong eccentricity results
in only one main tangential rift, while other rifts
remain poorly developed (Walter and Troll 2003;
Walter et al. 2005). With initiation of a creeping
sector, an initially radial or ridge-like geometry is
likely to reconfigure and produce rift-zones that
will lead to additional rift arms. The most com-
mon arrangement resulting from such geometry
would be another (third) arm to form the frequent
triple-armed systems. Intrusion into the margin
between stable and unstable sectors may thus
favour the triple-armed configuration.

This architectural evolution may be illus-
trated in the development of the Taburiente
shield in the early subaerial construction of La
Palma, where rift zones seem to have progressed
from an initial disperse radial distribution of
eruptive vents (Fig. 4.8). Southward migration
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Fig. 4.7 Whether rifting is a consequence of deforma-
tion from plume-derived updoming and fracturing (a), or
rifting (forceful intrusion) causes a flank to deform by
creeping and spreading (b), the final result of both
processes is convergent. There are pros and cons for both
models and no definitive evidence favours either of them.

In fact, both types of rift zones may be present in the
Canaries, with type A predominant in the early stages of
construction of the island volcanoes and type B becom-
ing more prevalent in the latter stages of rift develop-
ment. N number of dykes; L distance across the rift
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of volcanism left the shield extinct and probably
interrupted the organisation of rift zones (Car-
racedo et al. 2001). Conversely, regular long-
lived triaxial rift zones develop where magma
plumbing remains stationary, e.g., the Central
Miocene Shield and the Plio-Pleistocene Las
Cañadas Volcano, in Tenerife (Fig. 4.9).

Analogue gelatine and sand-box experiments
confirm the generation of a triangular system of
conjugate graben axes in settings reproducing
the steady conditions of El Hierro (Fig. 4.10),
where magma plumbing apparently has
remained stationary, suggesting that these

triaxial rift zones may be a late reconfiguration
as a progressive response to volcano deforma-
tion (Walter and Troll 2003; Münn et al. 2006).
However, observations in galerías in the central
part of Tenerife show that the dyke complex of
the Miocene Central Volcano follows broadly
the very same orientation as the rift zones that
developed during the formation of Las Cañadas
Volcano and those of the present day rift zones
(Carracedo 1975, 1979).

At present there is no definitive evidence in
favour of either of these models—endogenously
driven mechanisms or rifting by spreading and
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Fig. 4.8 a Eruptive vents
and dyke outcrops of the
Taburiente shield volcano
(*0.77–0.4 Ma), La
Palma, with rift zones
forming a radial structure.
The incipient three-armed
rift organisation (solid
lines) was apparently left
incomplete by the
extinction of Taburiente
Volcano at an early stage
of development (from
Carracedo et al. 2001).
b Stages of structural
evolution of La Palma
from an initial radial
structure. The position and
direction of the creeping
flank favoured extension in
an east–west direction on
the southern flank, and thus
the formation of a north–
south rift zone. Once
formed, the main south rift
stabilized by the
alternation of constructive
and destructive processes
such as volcanism,
landsliding and erosion
(modified from Walter and
Troll 2003)
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creeping of volcano flanks. Both mechanisms,
although very different at the start give similar
results. A plausible assumption is that large,
deep triple-armed rift zones develop at the early
stages of island construction by plume related
updoming and fracturing, with later modifica-
tions due to volcano edifice stability issues,
whereas smaller rift systems (not necessarily
multiple) might form entirely from gravitational
spreading and associated structural re-arrange-
ments at unstable volcanoes.

4.4 Rift Zones of the Teide
Volcanic Complex

The Teide Volcanic Complex provides one of
the best possible scenarios to study the charac-
teristics and evolution of rift zones in ocean
volcanoes. The North East Rift Zone (NERZ)
presents a superb opportunity to study the entire
cycle of activity of an oceanic rift zone. This rift,
inactive for hundreds of thousands of years
along most of its length, has been deeply mass-
wasted by erosion and massive landsliding,
allowing an in-depth study of its internal struc-
ture, including the complex network of dykes

exposed (Delcamp et al. 2010; Carracedo et al.
2011). On the other hand, the North West Rift
Zone (NWRZ) represents an outstanding exam-
ple of the latest stages of rift development,
demonstrating interesting patterns of spatial and
temporal distribution of eruptive vents and
associated geochemical and petrological varia-
tions (Ablay and Martí 2000; Carracedo et al.
2007), including rare examples of complex
magma mixing (Wiesmaier et al. 2011).

4.4.1 The NE Rift Zone

This rift zone extends for about 35 km, from the
foot of Teide to the Anaga massif. The deep core
of the rift is an extension of the Central Miocene
shield towards the Anaga massif (Guillou et al.
2004; Carracedo et al. 2011), outcropping at the
NE end of the rift and underlying the Pliocene
Anaga Volcano (Fig. 4.11). The present config-
uration of the NERZ is characteristic of rift
structures, with a cluster of eruptive vents form-
ing the crest of the ridge and lava flows at the
flanks (Fig. 4.12). Vents are tightly packed at the
SW (proximal) end of the rift, whereas at the SE
(distal) tail they end and appear dispersed in a
characteristic fan distribution. The proximal end
of the rift also concentrates the most recent
activity. This part actively contributed to the Icod
lateral collapse and the evolution of the TVC.

The rift apparently had three successive
cycles of activity—in the Miocene, the Pliocene
and the Pleistocene (Fig. 4.13). The last one
(comprising the last million years) is the best
documented and is the only one that is related to
the TVC, at least in its final stages. This latest
cycle of activity of the NERZ has been coeval
with the development of Las Cañadas Volcano,
but both volcanoes were clearly interacting, as
suggested by sequences of basaltic lapilli from
the NERZ alternating with beds of phonolitic
pumice from Las Cañadas Volcano. It appears
that most recent age dates, in fact, imply that the
Anaga shield is younger than the central edifice,
making an arrangement of shields to form rift-
zones as shown in Fig. 4.10 somewhat unlikely.

Concentric
volcanism

Migrating
volcanism

(a)

(b)

Fig. 4.9 Classical triple-
armed rift zones are
usually not well developed
when moving magmatic
sources are involved (e.g.,
a La Palma). A stationary
magma supply, however,
gives rise to concentrically
overlapping volcanoes and
well-developed triple-
armed rift zones (e.g.,
b Central shield in
Tenerife) (modified from
Carracedo et al. 2001)
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Three reasonably well-dated and documented
successive giant landslides in the latest active
cycle of the NERZ provide relevant information
to understand the genesis and characteristics of
mass-wasting processes in oceanic volcanoes,
and help to clarify the succession of events
giving rise to the formation of the Las Cañadas-
Icod-La Guancha collapse depression and the
subsequent nested Teide Volcano.

4.4.2 Evolution of the NE Rift Zone

The initial, pre-collapse stages of the latest cycle
of activity of the NERZ developed a volcanic
ridge that may have reached an altitude of about
2,000 m a.s.l. (Fig. 4.14a). The critical phase of
construction was between ca. 1,100 and 860 ky,
when the growth rate may have reached 3.5 m/

ky, indicating an intense episode of intrusive and
eruptive activity leading to the progressive
instability of the volcano. This, in turn, led to
dykes changing direction in response to the
increasing instability at this stage (see e.g.,
Walter and Troll 2003; Delcamp et al. 2010)
from 20� to 40�, the main orientation of intru-
sions in the NERZ, to 0�–10� at the final stages.

The main constraint for the time of occur-
rence of the first lateral collapse (Micheque),
with an estimated volume assessed from digital
elevation model analysis of *60 km3, is pri-
marily based on the ages obtained in the Los
Dornajos galería (see upper section in Fig. 4.13),
which suggests that this collapse must have
occurred ca. 830 ky, the age of the first nested
lavas above the avalanche breccia. The landslide
generated a basin in the north flank of the rift,

N

N

S

(a)

(b) (d)

(c)

Fig. 4.10 a, b Scaled analogue experiment with gelatine
models. a Gelatine cone before injection of a liquid (the
magma) into the interface creeping/non-creeping sector
and a slight southwestward eccentricity of the lubricated
base. b After injection, 80 % of the experiments
produced a triple-arm intrusion arrangement (Walter
and Troll, 2003). c, d analogue experiment with sand

cones simulating the overlapping ‘‘Tiñor cone’’ and the
‘‘Southern Ridge’’ (El Hierro) emplaced simultaneously.
After 7.1 h, the ‘‘El Golfo cone’’ was added overlapping
the ‘Tiñor cone’ and the ridge. In d, the two cones and
the ridge have spread for 34 h showing a triangular
system of conjugate graben axes (Munn et al. 2006)
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probably extending towards the present-day
valley of La Orotava (Fig. 4.14b). Subsequent
volcanism filled large parts of the collapse basin,
extending beyond the coastline, concealing the

scar and the avalanche breccia to be only found
in galerías in the northern flank of the rift zone.

A second landslide (the Güímar lateral col-
lapse, estimated volume: 47 km3), at the east
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N

Fig. 4.11 Google Earth image of the NE Rift Zone of
Tenerife viewed from the Anaga massif (oblique view of
Tenerife from the NE). The rift had already extended in
the Miocene from the central edifice of what is now Las
Cañadas towards the Miocene-Pliocene Anaga massif.

The landslide scars of La Orotava and Güímar are clearly
visible, unlike the Micheque landslide, which is com-
pletely covered by post-collapse volcanism (image
Google Earth)
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flank of the NERZ, formed a pronounced
(10 9 10 km) depression (Fig. 4.14b). The tim-
ing of this collapse is constrained by the age of
860 ± 18 ky obtained from lava flows topping
the southern collapse scar (Pared de Güímar), and
that of the first volcanism nested inside the
landslide embayment, dated at 831 ± 18 ky.

The eruptive rate and volume of the Güímar
in-fill formations seem much lower than those of
the Micheque event. This suggests that, although
roughly contemporaneous, the Micheque col-
lapse may have been the first of the two to occur,
coinciding with a phase of intense volcanic and
intrusive activity. This may point to a funda-
mental difference in the mechanism that caused
the two flank failures: distensive stresses asso-
ciated with intense eruptive and intrusive activ-
ity in the Micheque collapse, and gravitational
instability increased by the response to the ear-
lier collapse in the case of the Güímar landslide.
This would explain the observation that, by far,
the greater part of volcanism continued to be

concentrated in the interior of the first, the Mi-
cheque collapse, even after the Güímar landslide
took place. This caused the total infilling of the
Micheque depression and the evolution of sig-
nificant volumes of magma (0.5–1.0 km3)
towards highly differentiated compositions in
this sector (Fig. 4.14c, d).

A third collapse at the northern flank of the
NERZ (Orotava lateral collapse, estimated vol-
ume: 57 km3) formed the Orotava Valley
(Fig. 4.14d). The relatively accurate dating of
the previous collapses has not been achieved in
this last case. Its age is constrained by a mini-
mum age of 566 ± 13 ky from lavas of felsic
compositions of the Micheque nested volcanism
cascading over the eastern scar of the Orotava
Valley (Carracedo et al. 2011), and the age of
690 ± 10 ky, obtained by Abdel-Monem et al.
(1971) from the lower part of the collapsed
sequence at the southern (Tigaiga) scar
(Fig. 4.14d). It seems therefore that the Orotava
collapse occurred between 690 ± 10 and
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566 ± 13 ky, which places it significantly after
the Micheque and Güímar landslides.

4.4.3 Decline and Dispersed Activity
of the NERZ

Following the three collapses, the rift entered
into a stage of stabilisation and progressively

decreasing eruptive activity. Simultaneously, the
dispersion of the eruptive centres, previously
grouped preferentially at the crest of the rift,
increased, particularly at the distal NE end (see
Fig. 4.14d). These eruptions, all of normal
polarity, have given ages of 513 ± 12 ky (Car-
racedo et al. 2007), 540 ± 40 ky (Abdel-Mo-
nem et al. 1971) and 560 ± 30 ky (Ancochea
et al. 1990). NERZ eruptive activity, although
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attenuated, has continued until recent times,
particularly in the proximal (SW) area of the rift,
as underlined by ages of 37 ± 3, 33 ± 3, and
33 ± 1 ky (Carracedo et al. 2007), and even to
historic times (e.g., the Fasnia and Arafo erup-
tions in 1705 A.D.).

4.4.4 The NW Rift Zone

Just as the deeply eroded NERZ provides rele-
vant information for the understanding of the
entire cycle of growth and mass destruction of
rift zones, the NW rift, very active in the
Holocene, gives significant details of the tem-
poral and spatial distribution of surface volca-
nism and thus provides indirect information

about the evolution and internal structure of the
TVC magma system during its most recent
volcanic cycle (Ablay et al. 1998; Carracedo
et al. 2007; Wiesmaier et al. 2011).

The eruptive vents cluster in the characteris-
tic pattern of rift zones at the crest of the rift,
while lava flows extend down both flanks
(Fig. 4.15). One of the most interesting features
is the compositional distribution of eruptions,
showing a distinct bimodal series, with basanite
and phonolite, respectively as the distal and
proximal end-members, and intermediate erup-
tions in the central part of the rift zone
(Fig. 4.15). The petrologically distinct magmas
evolved from a common primitive basanite
parent by crystal fractionation (Ablay et al.
1998). The interaction of these two magmas, i.e.,
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Fig. 4.15 Holocene volcanism in the NW rift zone
demonstrating the characteristic groupings of eruptive
vents along the crest of the ridge. Assuming a common
mafic parent from the uppermost mantle, eruptions are

spatially arranged according to composition, with basa-
nites at the western (distal) end, and phonolites at the
eastern (proximal) end, close to the shallow and differ-
entiated magma reservoirs of Teide Volcano
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basanites with phonolites, that evolved sepa-
rately in a shallow central chamber, led to
spectacular examples of magma mixing (Araña
et al. 1994; Wiesmaier et al. 2011).

4.5 Rifting and Landsliding
in the TVC

The youngest lateral collapse (Icod) on the north
flank of Tenerife occurred at *200 ky, as docu-
mented by the age of the lava flows above the
debris avalanche in the galería Salto del Frontón
(two K/Ar ages of 195 ± 12 and 198 ± 5, and
one Ar/Ar age of 192.3 ± 11, from same flow).

From swath bathymetry data, Watts and
Masson (1995) inferred that the debris avalanche
covered an area about 20 km wide and 105 km
long. The tongue-shaped structure, suggesting
high mobility, extends upslope towards a
‘‘chute-like’’, apparently erosive feature in the
Icod Valley and the Caldera de Las Cañadas
(Fig. 4.16).

The nature of the collapse is still not fully
resolved (i.e., vertical versus lateral). The vertical
collapse is believed to have formed from several
classical (vertical) caldera collapses between 1.2
and 0.17 My (e.g., Ridley 1971; Booth 1973;
Martí et al. 1994; Bryan et al. 1998). On the other

hand, a range of authors have proposed that the
present day Las Cañadas Caldera is primarily a
landslide scar (Navarro Latorre and Coello 1989;
Ancochea et al. 1990, 1999; Carracedo 1994;
Watts and Masson 1995; Urgeles et al. 1997,
1999; Masson et al. 2002). In fact, strong evi-
dence exists for a lateral collapse (landslide) at
around 200 ky, which is clearly linked to sub-
marine debris avalanche deposits (Fig. 4.16). The
point has been made on experimental grounds
that repeated (vertical) caldera collapses can
weaken the surrounding crust and create a ‘‘spi-
der-web’’-like arrangement of faults inside and
outside a collapse caldera (Walter and Troll 2001;
Troll and Schmincke 2002). These authors have
argued that in the case of ocean islands, where
coastlines represent un-buttressed free surfaces,
entire ‘‘cake slices’’ may break out of an island’s
edifice by lateral instability once a system of
radial and concentric weaknesses has been
established (Troll and Schmincke 2002). There-
fore, the combined effects of vertical and lateral
collapses may have given rise to the present-day
Las Cañadas Caldera, the most recent modifica-
tion being the Teide and Pico Viejo complexes
that currently grow inside the scar of the 200 ky
(lateral) Icod collapse, which in turn, likely
exploited older instabilities in the Las Cañadas
edifice.

A continuous layer of debris avalanche
deposits extends inside the Las Cañadas Caldera
below the present Teide stratocone (Márquez
et al. 2008), providing strong support for a land-
slide origin of the currently visible depression.

The relevant aspect of this collapse event is
that it formed a general spatial and temporal basis
for the TVC and had a direct role in its con-
struction and in promoting the magmatic vari-
ability present in the current volcanic complex.

4.6 Rifting, Landsliding
and Magmatic Variation

A comparative analysis of the evolution of dif-
ferent Canarian rift zones, including those of the
TVC, outlines notable common characteristics.
Rifts are recurrent features that show cyclic

2000

-2000
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-4000

Icod

Anaga

Caldera
Las Cañadas Teide

Fig. 4.16 3D representation of the north flank of
Tenerife, viewed from the northwest, showing the
successive lateral collapses. The youngest (Icod) is
indicated in a different colour. Note the extension
upslope of the debris avalanche towards the southern
wall of the Cañadas Caldera, interpreted as the headwall
of this giant landslide. Teide Volcano is nested in the
Icod collapse depression (from Watts and Masson 1995)
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patterns of growth, instability, flank collapse,
nested volcanism, and eruptive decline and dis-
persion (Carracedo et al. 2011).

Variations in magma composition appear to
occur in response to lateral collapses in the
Canaries (Fig. 4.17). A collapse implies disrup-
tion of an established feeding system of a rift,
which allows dense mafic magmas to ascend to
the surface by edifice unloading (Manconi et al.
2009). The result is the concentration of pro-
gressively centralized eruptions focusing in the
interior of the landslide basin, thus progressively
filling up the collapse scar (Carracedo et al.
2007, 2011; Longpré et al. 2009). The
emplacement of magma at increasingly shal-
lower depths within this nested volcanic edifice
will allow for extensive modification of magma
and will lead to progressively more differenti-
ated eruptions, commonly reaching felsic com-
positions (trachytes, phonolites) that become
more and more dominant due to the progressive
increase in height of the volcanoes nested inside
the landslide embayments.

Although felsic volcanic complexes in the
Canaries may originate from a variety of pro-
cesses (Wolff 1983; Pérez-Torrado et al. 1995;
Troll and Schmincke 2002; Paris et al. 2005;
Longpré et al. 2009), a considerable volume of
differentiated volcanism in the Canaries appears
to be associated with rift flank collapses that are

followed by abundant and prolonged nested
volcanism. Regularly, these eruptions evolve
from initially mafic to terminally felsic compo-
sitions. Lateral collapses may consequently be
considered to represent a major cause for
structural and petrological variability in ocean
islands (Carracedo et al. 2007, 2011; Longpré
et al. 2009; Manconi et al. 2009), Teide being a
prime example of this feature.
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