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Abstract

The Bafg-Saghand metallogenic belt is located in the central part of the Kerman—Kashmar tectonic zone and contains
39 individual occurrences of iron oxide-apatite + REE mineralizations. These mineral concentrations, e.g., Chadormalu,
Choghart, Sechahun, and Esfordi, comprise a total of ~ 1500 million tons of iron ore with an average grade of ~55% Fe.
In terms of origin, time, and geodynamic setting, several modes of formation have been suggested for these ore deposits,
including magmatic, hydrothermal, and banded iron formation scenarios. In the present study, the tectonic setting and metal-
logeny of iron oxide-apatites of the Bafq-Saghand belt are investigated utilizing trace element geochemistry, age dating, and
oxygen isotope analyses. The geochemical characteristics of apatite and magnetite and the 5'30 values of magnetite (from
—0.1 to+2.2 %o) indicate a dominantly magmatic-hydrothermal (580 > 4 0.9 %0) formation process, although primary
magmatic mineralizations were locally leached and hydrothermally redeposited (e.g., samples with 880 < +0.9 %o). The
Cambrian volcano-sedimentary host rocks to the mineralization is intruded by calc-alkaline tonalite, trondhjemite, granodi-
oritic, dioritic, and granitic rocks that formed in association with subduction of the Proto-Tethys Ocean under the Gondwana
supercontinent in the Neoproterozoic to Early Cambrian (525-547 Ma). Additionally, a later geodynamic episode produced
intrusions of alkaline syenite and monzosyenite bodies during a continental rifting event. We provide new geochronological
constraints for these younger alkaline igneous rocks that document a temporal range from 421 to 447 Ma for their intrusion.
In combination with the previously reported overlapping ages of the older calc-alkaline magma bodies (525-547 Ma) with
the volcano-sedimentary host rock (528 Ma) and the iron oxide mineralization (510-539 Ma), we can now exclude conti-
nental rifting as a geodynamic processes that is linked to ore formation in the region. Our results corroborate that the Bafq
iron ore mineralization formed during subduction of the Proto-Tethys Ocean under the Gondwana supercontinent in a near
surface continental margin setting.

Keywords Kiruna-type ore deposits - Bafg-saghand metallogenic belt - Central Iran zone - Calc—alkaline magmatism -
Alkaline magmatism - Geochronology - Geochemistry

P< Seyed Afshin Majidi 4 Pars Kani Mineral Industries Research and Development,
afshinmajidi @ gmail.com Tehran, Iran

. . Department of Mining Engineering, Isfahan University
Geological Survey of Iran, Mehraj Bd, Tehran, Iran of Technology, 8415683111 Isfahan, Iran
Department of Geology and Geophysics, Islamic Azad 6

s K . Department of Geosciences, National Taiwan University,
University, Science and Research Branch, Tehran, Iran P y

Taipei, Taiwan
Department of Earth Science, Section for Natural Resources

and Sustainable Development, Uppsala University,

Villavigen 16, 752 36 Uppsala, Sweden

Published online: 27 October 2020 @ Springer


http://orcid.org/0000-0002-0680-6895
http://crossmark.crossref.org/dialog/?doi=10.1007/s00531-020-01942-5&domain=pdf

International Journal of Earth Sciences

Introduction

Iron is the most important metal for modern industry and
will remain so for many decades to come (e.g., Arndt et al.
1977). Iron is sourced from several types of ore deposit,
with Kiruna-type iron ores being one of the important
deposit types for iron at present. Kiruna-type iron-apatite
deposits are widely classified as part of the IOCG group of
ore deposits, a concept that was introduced after the explo-
ration of the Olympic Dam deposit in Australia (Roberts
and Hudson 1983; Meyer 1988; Porter 2011; Dmitrijeva
et al. 2018; Simon et al. 2018). Later workers gradually
departed from this classification and iron-apatite deposits
may represent a separate and self-standing deposit type
(Hitzman et al. 1992; Williams et al. 2005; Groves et al.
2010; Jonsson et al. 2013; Troll et al. 2019). More spe-
cifically, magnetite-apatite deposits come typically in two
major categories: (1) magnetite-ilmenite enriched apatites
(i.e., nelsonite with almost 30% apatite) often associated
with anorthosite or (2) low-Ti iron oxide-apatite deposits
with high amounts of phosphate known as Kiruna-type
(Williams et al. 2005; Groves et al. 2010). Genesis of
the first category may be related to liquid immiscibility
between silicate magmas and Fe-Ti—P melts (Philpotts
1967; Zhou et al. 2013); however, partial melting of Fe and
P enriched crustal rocks or extreme crystal fractionation
were also previously proposed (Kolker 1982; Barton and
Johnson 1996; Naslund et al. 2002). Regarding Kiruna-
type iron oxide-apatite deposits, their often magmatic tex-
tures and the usual association with sub-alkaline igneous
rocks led to a range of magmatic fractionation and immis-
cibility models to explain their origin for this deposits type
(e.g., Nystrom and Henriquez 1994; Clark and Kontak
2004; Hou et al. 2011; Yu et al. 2011; Tornos et al. 2017;
Simon et al. 2018; Sarlus et al. 2020). In addition, on the
basis of oxygen isotope and trace element studies, a high-
temperature magmatic to magmatic-hydrothermal origin
was suggested for Kiruna-type deposits (Nystrom et al.
2008; Jonsson et al. 2013; Broughm et al. 2017; Tornos
et al. 2017; Troll et al. 2019; Peters et al. 2020) although
based on textural and geochemical grounds, hydrother-
mal processes are also widely recorded in such deposits
(e.g., Hitzman et al. 2000; Rojas et al. 2018; Simon et al.
2018; Hu et al. 2020). This aspect is underpinned by fluid
inclusion studies that document hydrothermally processes
at work (Jami et al. 2007; Vapnik et al. 2007; Heidarian
et al. 2017; Nikolenko et al. 2018), leading some workers
to put forward a sedimentary exhalative origin for sev-
eral Kiruna-type deposits (Pardk 1975; Aftabi et al. 2009;
Mohseni and Aftabi 2015). Most recently, however, the
main discussion in respect to Kiruna-type deposits cen-
tered around whether a purely ortho-magmatic origin (i.e.,
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magma and magmatic fluids at high temperatures) (e.g.,
Frietsch 1978; Henriquez and Martin 1978; Nystrom and
Henriquez 1994; Barton and Johnson 1996; Knipping
et al. 2015a, b, Ovalle et al. 2018; Simon et al. 2018; Troll
et al. 2019) or a hydrothermal and metasomatic origin at
medium to low temperature (Bookstorm et al. 2011; Dare
et al. 2014; Westhues et al. 2016; Westhues et al. 2016,
2017a; b; Deymar et al. 2018) applies.

The Bafq-Saghand metallogenic belt within the Kash-
mar—Kerman Tectonic Zone is located between the Yazd and
Tabas structural blocks in Central Iran (Haghipour and Pelis-
sier 1977; Ramezani and Tucker 2003) (Fig. 1) and hosts 39
individual iron mineralizations that contain more than 1500
million tons of iron ore (Fig. 2). The ore content of the indi-
vidual deposits varies between 10 and 400 million tons at an
average grade of ~55 wt. % Fe (Forster and Jafarzadeh 1994,
Torab 2008) and different models have been put forward
to explain the Bafg-Saghand iron ore mineralization. These
comprise an association of the ore deposits with carbonatite
magmatism (Darvishzadeh 1983; Samani 1988; Forster and
Borumandi 1971) or with alkaline magmatism (Mokhtari
et al. 2013), with magmatic crystallization and immiscible
magmatic processes in connection with calc-alkaline mag-
matism (Forster and Jafarzadeh 1994; Williams and Housh-
mandzadeh 1966; Miicke and Younessi 1994; Moore and
Modabberi 2003), hydrothermal fluid processes and hydro-
thermal overprint associated with calc-alkaline magmatic
activity (Daliran 2002; Jami et al. 2007; Torab and Lehman
2007; Bonyadi et al. 2011; Heidarian et al. 2017; Ghazi et al.
2019), or banded iron formation style sedimentary processes
(Aftabi et al. 2009. Mohseni and Aftabi 2012, 2015). In
addition to the metallogenic discussion, two rival possibili-
ties for the tectonic setting of ore forming events are also
widely discussed: (1) a within plate rifting event (Berbe-
rian and King 1981) and (2) a subduction related arc setting
(Ramezani and Tucker 2003).

In this study we aim to resolve (a) the petrogenetic associ-
ation of the iron oxide-apatite deposits in the Bafq-Saghand
metalogenic belt using trace elements of apatite and mag-
netite and oxygen isotopes in magnetite from four individual
iron deposits in the region (Chadormalu, Choghart, Se-Cha-
hun and Esfordi) and (b) resolve the timing and tectonic
setting of ore formation, through geochemical whole rock
analysis and U-Pb zircon dating of so far undated alkaline
intrusive rocks in the region.

Geological background

The microcontinents of the western parts of Central Iran
were described individually by Takin (1972) and comprise
three separate fault-bound blocks of N-S orientation (the
Lut, Tabas and Yazd Blocks) (Fig. 1b). The Tabas and
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Fig.1 The Bafg-Saghand metallogenic belt lies within the Kashmar—Kerman Tectonic Zone (red stippled area), which is located between the
Yazd and Tabas structural blocks in central Iran (modified after, Haghipour and Pelissier 1977; Ramezani and Tucker 2003)

Yazd blocks are separated by a structural belt defined as
the Kashmar—Kerman tectonic zone. The Kashmar—Kerman
tectonic zone includes metamorphic basement units cov-
ered by Mesozoic-Cenozoic units. The Bafq-Saghand belt
is located in central part of the Kashmar—Kerman tectonic
zone, which provides remarkable exposures of the deeper
crustal levels of Upper Neoproterozoic and Lower Paleozoic
rocks (Fig. 2) (Haghipour et al. 1977; Soheili and Mahdavi
1991; Ramezani and Tucker 2003). The Bafg-Saghand belt

contains sedimentary, metamorphic, and volcanoclastic units
of the Late Neoproterozoic to Early Cambrian Tashk com-
plex (627-533 Ma), which represent the oldest rock series
of the Bafq-Saghand belt (Figs. 2, 3) (Ramezani and Tucker
2003).In detail,, the metamorphic units of the Tashk Com-
plex comprise migmatites, amphibolites, gneiss, schists,
marble, and quartzites along with carbonate and volcano-
sedimentary sub-units that belong to the Boneh-Shurow
(617-544 +7 Ma). Poshteh-Badam (likely Neoproterozoic),
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Fig.2 Simplified geological map of the Bafq-Saghand zone with location
symbols. The estimated iron ore tonnage is over 1500 million tons

and Sarkuh (likely Neoproterozoic—Early Cambrian) meta-
morphic complexes (Haghipour et al. 1977; Ramezani and
Tucker 2003) (Figs. 2, 3).

The overlaying Cambrian Volcano-Sedimentary Unit
hosts the iron oxide-apatite ores of the Bafq-Saghand belt
(Figs. 2, 3) (Huckriede et al. 1962; Stocklin 1968; Haghipour
and Pelissier 1977). This unit comprises felsic to interme-
diate volcanic rocks, dolomitic limestones with occasional
gypsum interlayers (Ramezani and Tucker 2003), and some
shale-sandstone sub-units (Haghipour and Pelissier 1977)
that are widely exposed throughout the Bafqg-Saghand zone
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of the main ore deposits. Iron ore deposits are marked with diamond

(Fig. 2). The Cambrian Volcano-Sedimentary Unit displays
a thickness of ~ 1500 m. although deformation processes and
hydrothermal activities occurred along the boundary of the
Cambrian Volcano-Sedimentary Unit (Fig. 2) (Ramezani
and Tucker 2003).

The Cambrian Volcano-Sedimentary Unit that hosts the
iron oxide-apatite ore deposits is also known as the Saghand
formation (Samani 1993), the Rizu-Dezu series (Berberian
and King 1981) or the Esfordi formation (Forster and Boru-
mandi 1971). The Cambrian Volcano-Sedimentary Unit is
intruded by a series of calc-alkaline intrusions and most of the
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volcanic rocks of the Cambrian Volcano-Sedimentary Unit are
derived from the three calc-alkaline igneous complexes that
are, based on geochemical characteristics, felsic volcanic and
magmatic rocks of an arc type magmatic setting (Ramezani
and Tucker 2003; Jami 2005). The three calc-alkaline mag-
matic complexes that intruded the Bafq-Saghand belt com-
prise (1) the Cambrian Ariz granitoids (533 +1 Ma), (2) the
Cambrian Zarigan leucogranites (525-526+ 1 Ma), and (3)
the post-metamorphic Eocene Khoshumi granitoids (44.3+1
to 43.4+0.2 Ma) (Ramezani and Tucker 2003) (Figs. 2, 3).
The Cambrian Ariz complex is intruded by the Zarigan leu-
cogranite complex, which comprises the Zarigan and the
Narigan intrusive granitic massive rocks (525+7 Ma), diabase
dykes, the Douzakh—Darreh leucogranites (526 + 1 Ma), and
the Sefid granite (525 Ma) (Ramezani and Tucker 2003). The
Narigan granite sub-complex, part of the Cambrian Zarigan
leucogranite complex, is located 6 km from the Esfordi deposit
(Ramezani and Tucker 2003) and covers 50 km? square kilom-
eters of surface area (Jami 2005). Boomery (2012) described
the Narigan intrusive body in the Northern part of the Esfordi
deposit as an alkaline syenite body. According to field obser-
vations, this syenite body is also exposed in the Southern part
of Lake-Siah deposit (Valizade and Sharifi 2004; Mokhtari
et al. 2013) as well as in the Eastern part of Narigan village

(Majidi 2015). The Zarigan intrusive body, locally also known
as Chadormalu and Mishdowan granite (Daliran 1990; Torab
and Lehman 2007), is a shallow (Ramezani and Tucker 2003)
to semi-deep (Daliran 1990) white-colored body of aphanitic
tonalite-trondhjemite character (Ramezani and Tucker 2003).
The body was injected into the Tashk formation and the Cam-
brian Volcano-Sedimentary Unit and is mostly of granitic
to granodioritic composition. In the South-South Eastern
parts of the Bafg-Saghand belt, local diorites, as part of the
Cambrian granitoids complex, are stratigraphically followed
by rhyolite and rhyolitic tuffs (Early Cambrian) (Soheili and
Mahdavi 1991; Niktabar and Rashidnejad Omran 2018). The
Eocene post-metamorphism activity comprises the Khoshumi
granite (44.3 + 1 Ma) and the Daranjir diorite (43.4 +0.2), the
former of which intruded into the Chapedony core complex
(Ramezani and Tucker 2003) (see Fig. 2).

Ore deposit geology
The Bafq-Saghand metallogenic belt contains, amongst
several others, the Choghart, Chadormalu, Se-Chahun

and Esfordi iron-apatite deposits (Fig. 2) that are hosted
within the Cambrian Volcano-Sedimentary Unit. These
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iron oxide-apatite deposits are present as massive, and as
vein and stockwork type associations. Specifically, the
iron ores occur as regular shaped domes of mostly mas-
sive and lenticular-shaped magnetite concentrations sur-
rounded by veined magnetite-bearing host rocks. Magnet-
ite is the most common ore mineral; however, it is often
martitised. In addition, actinolite and apatite minerals are
widespread within the Bafq-Saghand ores (Fig. 4). The
massive magnetite bodies surrounded by magnetite-acti-
nolite-apatite stockworks often show gradual boundaries
with the surrounding host rock, and where sharp bounda-
ries are present, they usually have structural (faulted)
controls. Textural/mineralogical zoning is usually visible
from the central part of the massive ore deposits towards
the rims and apatite intergrowths is common within the
magnetite bodies. Brecciated rims, large crystals of apa-
tite* and widespread martitisation is ubiquitous (Torab
and Lehman 2007). Microscopic studies indicate that
granular brecciated textures contain subhedral to euhe-
dral magnetite grains of different sizes with martitisation

visible along fractures and grain boundaries due to sub-
sequent hydrothermal fluid overprint (Torab and Lehman
2007). In addition to martitisation, individual crystals
and bladed aggregates of presumably primary hematite
are also visible within some of the studied deposits (Torab
and Lehman 2007). The brecciated ore is usually of low
grade and is composed of magnetite + hematite + apa-
tite + actinolite 4+ quartz and calcite. Phenocrysts of quartz
and feldspar become increasingly less abundant from the
brecciated zone toward the central part of the ore bodies.
Dolomitic parts of the country rocks that are occasion-
ally affected by ore deposition can show alkaline metaso-
matism (Fig. 4). The carbonated matrix is then converted
into actinolite and portions of the associated volcanic host
rocks can be pinkish as a result of sodic, potassic and pos-
sibly calcic hydrothermal overprint (Fig. 4). In some of the
iron-apatite deposits (e.g., Esfordi, Gazestan and Zarigan),
apatite veins occur along with actinolites and hematites.
The P,0O5 grade of these apatite veins ranges between 15
and 35 wt. % P,0:s.

Fig.4 Field image of metasomatised host rock to the iron oxide-
apatite ores in the Bafg-Saghand metallogenic belt. Iron ore veins
are visible in lower center of the image and are enlarged in the inset.
Dolomitic parts of the Cambrian Volcano-Sedimentary Unit are occa-

@ Springer

sionally alkaline metasomatised. In some cases, volcanic rocks are

pinkish as a result of sodic, potassic and possibly calcic hydrothermal

activities (See text for details)
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Sampling and analytical methods

All collected samples were immediately labeled in the field,
stored in plastic bags, and transported to the laboratory at
Geological Survey of Iran (GSI) for geochemical analysis.
Major oxide elements of igneous rocks, magnetite and apa-
tite samples were analyzed on a MagiX PRO X-ray fluo-
rescence spectrometry (XRF) on fused glass beads at the
GSI. Specifically, after crushing, 10 g of each sample was
dried for 24 h at 110 °C before conventional gravimetric
determination of loss on ignition (LOI) by firing at 1000 °C
for at least 2 h. Fusion beads for XRF were prepared using
an alkali flux agent comprising 80% lithium tetraborate and
20% lithium metaborate with a sample to flux ratio of 1:2,
following the method of Kimura and Yamada (1996). Trace
element and REE concentrations were determined with
Inductively Coupled Plasma-Mass Spectrometry (ICP-MS)
on a Varian 810/820-MS instrument, using the protocol of
Jenner et al. (1990) at the applied research center of GSI.
Sample powders (0.5 g) were digested using HF + HNO,
mixture (multi acid solution) in high-pressure Teflon beakers
for 48 h at ca. 190 °C prior to analysis in the ICP instrument
for the quantification of the elements. Rh was used as an
internal standard to monitor signal drift during counting.
Pure element standards were used for external calibration
(Tables 1, 2, 3).

To conduct oxygen isotope analyses, the collected sam-
ples were crushed using a jaw crusher and placed in an
ultrasonic bath to remove fine dust. After drying, mag-
netite grains were separated using magnetic separation.
The separated magnetite grains were then hand-picked to
avoid impurities. Finally, approximately 20 mg of pure
magnetite mineral grains was separated per sample for
analysis. For oxygen isotopes, both conventional and laser
fluorination methods were used. The magnetite separates
were analyzed using a conventional silicate line at Cape
Town University, South Africa (Harris and Ashwal 2002).
Approximately 20 mg (magnetite) sample was reacted with
CIF;, and the liberated O, converted to CO, using a hot
platinized carbon rod. Magnetite was reacted overnight at
600 °C. A sub-set of magnetite separates were analyzed
using the laser fluorination analytical process described in
Harris and Vogeli (2010). Approximately 5 mg of sample
was reacted in the presence of approximately 10 kPa BrF;
and the purified O, was collected onto a 5 A° molecular
sieve contained in a glass storage bottle. Samples pre-
pared by conventional and by laser fluorination were both
analyzed at Cape Town University with a Finnigan Del-
taXP mass spectrometer in dual-inlet mode. All data are
reported in §'80%o are (Rample/Rstandara — 1) X 1000, and
R is the measured ratio (i.e., '%0/!'%0) (Table 5). Analysis
of standard materials yielded uncertainties of + 0.15%eo.

Samples from alkaline intrusions were subjected to in situ
zircon dating. Prior to analysis by LA-ICP MS, euhedral
to subhedral zircons with few cracks and inclusions were
picked out manually under a binocular microscope and then
mounted on epoxy resin and polished for cathodolumines-
cence (CL) imaging. CL images were used to observing
the internal structure of each zircon grain and for selecting
suitable positions for laser ablation isotope analysis. U-Pb
isotope dating (Table 6) was carried out at the geoscience
laboratory of the National University of Taiwan, using a
LA ICP-MS. Isotopic ratio of U-Th-Pb was calculated using
the (GEMOC) GLITTER 4.0 software. The Pb content was
calculated using the Anderson function (Anderson 2002).
Additionally, weighted mean was calculated and Concordia
dating plots were plotted using Isoplot v.3.0 (Ludwig 2003).
A detailed description of the analytical methods applied in
this study together with analytical precision can be found in
Chiu et al. (2009) and Shao et al. (2015). Standard zircons
GJ-1, 91,500 and PleSovice were periodically analyzed to
monitor instrumental and analytical conditions and yielded
weighted mean 2°Pb/?*3U ages of 600.4+0.8 Ma (20,
N=329),1065.1+2.7 Ma (20, N=82), and 337.2+0.9 Ma
(20, N=381), respectively, in excellent agreement with the
suggested values (Jackson et al. 2004; Slama et al. 2008;
Yuan et al. 2004).

Results
Whole-rock geochemistry of igneous rocks

To better define the geodynamic evolution of the Bafq-
Saghand belt, samples from a variety of igneous rocks in the
region were collected and analyzed. This included intrusive
bodies of the Zarigan, Narigan and Chadormalu granites
and the Narigan and Esfordi alkaline syenitic rocks, Cam-
brian intrusions (e.g., the Ariz Granodiorites), the rhyolitic
volcanics (especially the Esfordi and Choghart rhyolites),
and various rhyolitic tuffs that crop out over the area. Geo-
chemical data for the calc-alkaline and alkaline rocks of the
Bafg-Saghand iron belt are shown in Table 1 and several
photographs of samples are presented in Fig. 5. Alkaline
samples show a minor range in silica from 54 to 60 wt. %
Si0,. Both Calk-alkaline intrusion and volcanic samples
show wider range and roughly the same of silica from 66 to
73.5 wt. %. and 69 to 75 wt. %, respectively. The alkaline
samples have relatively high contents of Na,O (1.5-7.5 wt.
%) and K,O (5.2-9.7 wt. %), as well as Nb (3.75-217 ppm),
Ta (0.9-11.5 ppm), Ti (360-6663 ppm), St (83-942 ppm),
and TREE (208-715 ppm) compared with the calc-alka-
line samples that have low K,O (0.2-5.5 wt.%) and TREE
(17-196 ppm), moderate CaO (0.11-3.6 wt.%), but high
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E-M-23 E-M-24 E-M-25 E-M-26 E-M-27 E-M-28 E-M-29 E-M-30 E-M-31

E-M-22

Esfordi
E-M-21

Table 3 (continued)

wt.%
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ppm

299.75

95.92

1564.70

2152.21 1936.39 2098.25 1798.50 563.53
1164.09

101.92

Ti

5291

857.19 714.33 714.33

867.77

Al

120.13

172.19
1635.70
1157.80

96.11
1209.97

96.11

220.24

104.11
2324.71

120.13

498.55

Cr

207.26
1250.71

498.55

302.49
1629.49

2509.56

1478.85

2291.10

335.90

557.46

414.52

28.59

107.20

335.90

116.16
3516.48

147.14

170.37

69.70

263.31

Mn

108.57

319.68

319.68

108.57
447.89

447.89

165.01

220.02 235.73 235.73

400.75

10.80

12.10

10.70

10.10

11.20

9.40

10.80

12.90

11.50

12.20

12.60

Ge

Co

Al O5 (11-21 wt. %), Ba (61-868 ppm), Zr (85-259 ppm),
concentrations.

Based on the TAS diagram for igneous rocks (Na,O +K,0O
versus Si0,) (Middlemost, 1985), the analyzed samples clas-
sify as granite, granodiorite, monzonite, syenite, and monzo-
syenite (Fig. 6a), while rhyolite compositions are dominant
in respect to volcanic rocks in the region (cf., Le Bas et al.
1986) (Fig. 6b). Overall two compositional series emerge:
a sub-alkaline one versus an alkaline one. Using the AFM
diagram, which separates calc-alkaline igneous rocks from
tholeiitic rocks (Irvine and Bargar 1971), all of the igne-
ous rocks are of calc-alkaline composition and plot in the
right-side corner of the diagram (Fig. 7a, b). When plotting
Na, 0+ K,0 + CaO versus SiO, on a Mali diagram (Fig. 8;
Frost and Frost 2008), two groups of plutonic rocks emerge
also. The first one is mostly composed of calc-alkaline rocks
and includes the Zarigan igneous granitic bodies, and the
Chadormalu, Narigan and Ariz intrusions, whereas the sec-
ond group belongs to the alkaline compositional series and
includes, e.g., the Narigan and the Esfordi syenites (Figs. 7,
8). According to Fig. 8, most of the regional volcanic sam-
ples fall within the calc-alkaline domain; however, two
samples from the Esfordi rhyolites have alkaline affinity.
These two samples are from close to the metasomatized ore
zone. Considering that the samples are collected from alka-
line metasomatized and alkaline bodies, we consider these
specific samples, similar to Majidi et al. (2015), to reflect
secondary hydrothermal overprint on the Esfordi rhyolites.

Apatite

The analytical results of 15 representative samples of apa-
tite crystals are presented in Table 2. Sr and Y contents of
apatites determined in this study range from 165 to 365 ppm
and from 743 to 1410 ppm, respectively. Mn and Mg content
of apatite samples are 67 to 188 ppm and 51 to 503 ppm,
respectively. The most noticeable result of the apatites is
high LREE contents that are ranging from 0.3 wt. % up
to 2.2 wt. %. The Eu content is 10.5 ppm to 33 ppm and
shows a clear negative anomaly (Eu/Eu*=0.07 to 0.26).
The apatite samples also show contents of F and Cl, ranging
from 0.6 ppm to 0.9 ppm and from 0.02 ppm to 0.11 ppm,
respectively.

Magnetite

Analytical results of 71 magnetite crystal separate samples
from iron oxide-apatite deposits within the Bafq-Saghand
metallogenic belt are presented in Tables 3 and 4. TiO, con-
tent of the studied magnetites varies from 0.02 to 2.5 wt. %,
and Al,O; values range from 0.01 to 1.15 wt. % with one
exception, namely magnetite from the partly metasomatised
Se-Chahun deposit that shows an Al,0; content of up to
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A

Fig.5 Representative rock samples of alkaline and calk-alkaline igneous intrusion in the Bafq-Saghand belt. a Narigan Syenite. b Esfordi Syen-
ite. ¢ Esfordi Syenite (more mafic minerals). d North Esfordi Syenite (Arash Syenite). e Chadormalu Micro-granite. f Narigan Granite

@ Springer
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Fig.6 a Classification diagram of Na,O+K,O versus SiO, (after
Middlemost 1985) for intrusive rocks. The petrological composition
of the samples is mostly granite, granodiorite, monzonite, syenite,
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M Ariz granite
/\ Narigan granite
A Esfordi syenite
<8> Arash syenite

Granite (Chadormalu)
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HH zarigan granite

Calc-alkaline series
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15 | B
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| B Rhyolite
| ¥V Rhyolite of Choghart
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I
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= ©
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monzosyenite and diorite. b Diagram of Na,0+K,O versus SiO,
(after Le Bas et al. 1986) for volcanic rocks. The petrological compo-
sition of the samples marks them as predominantly rhyolite

<> Tuffaceous rhyolite
B Rhyolite

V Rhyolite of Choghart
FH Rhyolite of Esfordi

Tholeiite series

Calc-alkaline series

M

M

Fig.7 AFM diagram which separates calc-alkaline igneous rocks from tholeiitic igneous rocks (after Irvine and Bargar 1971). See text for

details

8.2 wt. %. In terms of Cr,0; content, the majority of the
Bafq-Saghand magnetites are poor (0.002-0.06 wt. %) and
V content is also low, varying between 0.2 and 0.6 wt. %.
Mn values range from 0.01 to 0.31 wt. % and values of other
common elements (ppm) are 97-13,270 for Mg, 35-864 for
Ni and 17-180 for Co (Table 3).

@ Springer

Oxygen isotope

The 8'30 ratios of most of the collected magnetite sam-
ples (16 magnetite samples, Table 5), vary between — 0.1
and + 2.2 %o (n=14). Values higher than this range are
recorded in a small number of samples from altered
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Fig.8 Mali diagram which plots
Na, 0 +K,0-CaO versus SiO,
(Frost and Frost 2008). Two
groups of igneous rocks emerge.
The first one is composed of
calc-alkaline and alkaline-calcic
rocks and includes the main
granitic intrusions of the study
region, whereas the second
group is composed of syenitic
rocks and belongs to the alka-
line compositional series

Na,0+K,0- CaO weight %

60

Si0, weight %

M Ariz granite
/\ Narigan granite

A Esfordi syenite
& Arash syenite
Granite (chadormalu)

EB zarigan granite

Na,0+K,0- CaO weight %

<> Tuffaceous rhyolite
M Rhyolite
€ V Rhyolite of Choghart
EB Rhyolite of Esfordi

45 S0 55 60 65 70 75
$i0, weight %

Table 4 Statistical values of magnetite samples from iron oxide-apatite deposits within the Bafq-Saghand metallogenic belt

Deposit Esfordi Sechahun Chadormalu Choghart

wt % Min Max Ave Min Max Ave Min Max Ave Min Max Ave

Ti 0.01 0.46 0.10 0.13 1.51 0.75 0.30 1.37 0.74 0.15 0.68 0.42

Al 0.01 0.12 0.05 0.05 0.61 0.25 0.04 0.18 0.12 0.03 0.18 0.07

Cr 0.01 0.02 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

v 0.02 0.34 0.15 0.17 0.28 0.22 0.14 0.39 0.25 0.05 0.54 0.25

Ti+ Al 0.01 0.58 0.15 0.18 2.12 1.00 0.34 1.55 0.86 0.18 0.86 0.49

ppm
Mn 69.70 527 204 387 1084 653 929 3175 1657 310 2401 1380
Mg 96.51 3516 711 905 1508 1146 1025 9168 3843 2775 13,270 6610
Ni 165.01 864.36 442.79 78.58 247.10 161.34 35.50 248.00 156.90 37.40 177.80 112.15
Co nd nd nd 17.6 100 63.66 52.80 116.90 89.63 72.10 180.60 120.18

nd no detection

Table 5 §'%0 isotopic results of the Bafq-Saghand iron oxide (magnetite) deposits

Sample Id Deposit Mineral type 5180 %0 SMOW Description

0 15.01 Esfordi Magnetite 1.20 Massive brecciated magnetite—apatite

015.02 Esfordi Magnetite —-0.10 Detrital magnetite

015.03 Chadormalu Magnetite 2.20 Magnetite in brecciated type apatite

0 15.04 Chadormalu Magnetite 0.10 Massive brecciated magnetite

0 15.05 Chadormalu Magnetite 1.70 Massive magnetite

0 15.06 Chadormalu Magnetite 1.40 Main apatite ore

0 15.07 Chadormalu Magnetite -0.10 Massive magnetite

0 15.08 Esfordi Magnetite 6.76 Magnetite in brecciated altered tuff of the apatite ore

0 15.09 Choghart Magnetite 0.30 Massive magnetite

0 15.10 Choghart Magnetite 2.10 Magnetite sublayers in tuffaceous sandstone

0 15.11 Choghart Magnetite 1.60 Brecciated apatite, rim of Fe-oxide core

0 15.12 Choghart Magnetite 0.00 Disseminated magnetite in rhyolite

015.13 Sechahun Magnetite 1.70 Fe-oxide-jaspilite layer

015.14 Esfordi Magnetite 4.73 Magnetite in brecciated apatite ore

0 15.15 Sechahun Magnetite 1.40 Main apatite ore

0 15.16 Sechahun Magnetite -0.10 Massive magnetite

015.17 Esfordi Magnetite 4.80 Magnetite in brecciated apatite ore

015.18 Sechahun Magnetite 1.50 Massive magnetite

0 15.19 Sechahun Magnetite 2.00 Magnetite in brecciated type apatite

015.20 Esfordi Magnetite 6.50 Magnetite in brecciated altered tuff of the apatite ore

@ Springer
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brecciated tuff-derived magnetite samples (+4.7 to+ 6.8
%0; n= 4)

U-Pb dating

A total of 22 zircon grains from alkaline syenitic samples
were analyzed for U-Pb zircon geochronology (Table 6;
Fig. 9). Zircon grains from the syenite samples are domi-
nated by one major age populations of 469 to 411 Ma with
average of 437. 25+ 5 Ma.

Discussion
Geochemistry of the ore deposits
Apatite geochemistry

Crystallization of phosphates is an important process toward
the concentration of elements such as U, Th, Sr, Y and REEs
(Ayers and Watson 1993; Roeder et al. 1987; Toplis and
Dingwell 1996). Thus, geochemical investigations of the
Bafg-Saghand phosphate bearing minerals (Fig. 10), in
particular apatite, can provide insights into geological evo-
lutions (Sha and Chappell 1999; Belousova 2000; Belou-
sova et al. 2001, 2002). Considering the F-OH-CI content
of the apatite samples, the determined values are scattered
within the hydroxyl-fluorapatite domain (Fig. 11), and F/
OH ratios are higher than 2. These results are consistent
with previus studies on the Bafg-Saghand belt’s iron-apatite
deposits (Daliran 2002; Moore and Modabberi 2003, Torab
and Lehmann 2007; Bonyadi et al. 2011; Heidarian et al.
2018) and with data from Abagong, in China (Yang et al.
2013); Avnik, in Turkey (Chai et al. 2014); Gringesberg, in
Sweden (Jonsson et al. 2013), and Kiruna in Sweden (Harlov
et al. 2002). Specifically, the apatite samples in this study
are enriched with Si, Na, Y and sometimes Cl due to sodic
alteration (Bonyadi et al. 2011). Sr (165-365 ppm) and Y
(743-1410 ppm) contents of the studied apatites are dif-
ferent from carbonatitic apatite (Table 2) since Sr contents
of carbonatitic apatites are >2500 ppm and the Y contents
are <400 ppm (Belousova et al. 2002). Considering Sr-Y
(Fig. 12a) and Sr-Mn contents (Fig. 12b), the studied apa-
tites show values that are more typical forapatites associ-
ated with mafic igneous rocks and with Kiruna-type deposits
(e.g., Belousova et al. 2002; Frietsch and Perdahl 1995).
Hence, Torab and Lehman (2007) claimed that the dioritic
igneous bodies in the region are of high importance toward
generating the iron oxide-apatite deposits. The accumula-
tion grade of REEs in apatite in the Bafq-Saghand belt is
ranging between 0.36 and 2.25 percent in LREEs (Table 2).
Patterns in a REE spider diagram normalized to chondrite

@ Springer

indicate high depletion of Eu (Eu/Eu* =0.07-0.26) relative
to the other REE as well as a contrast between LREEs and
HREEs (Fig. 12d). The depletion of Eu is likely a result of
magmatic processes and low oxygen fugacity (so that Eu>*
can substitute for Ca**). Hence, during fractional crystal-
lization, Eu?* is substituted for Ca®* in, e.g., plagioclase
and then extracted from the magma, leading to consequent
depletion of Eu in the melt (Sverjensky 1984; Wood 1990a,
b). In carbonatitic apatites, depletion of Eu is usually not
observed or negligible, which is not in line with our studied
examples. Fractionation of LREE and HREE is small and
follows a linear trend (Belousova et al. 2002). Consider-
ing the REE patterns in the studied apatites (Fig. 12d), they
are similar to those from I-type granites (Sha and Chappell
1999). According to the Y vs Eu/Eu* diagram (Belousova
et al. 2002), the studied samples show once more similari-
ties with the apatites from Kiruna-type deposits, mafic rocks
and granitoids (Fig. 12¢), which is supported by the Sr-Y
and Sr—Mn patterns (Fig. 12). This points towards a primary
magmatic origin of the Bafq-Saghand iron oxide-apatite ores
and supports an association with the calc-alkaline magmatic
suite in the region.

Magnetite geochemistry

Magnetite can form in different physio—chemical environ-
ments, including silicate magma, carbonatite magmas, and
from low temperature hydrothermal fluids. These different
conditions can result in variable concentrations of REE in
magnetite (Dupuis and Beaudoin 2011; Nadoll et al. 2014).
The differences in trace elements (Ti, V, Cr, Ni, etc.) and
some REEs during magnetite mineralization are believed
to be systematic (Dare et al. 2014) and are dominantly gov-
erned by different partition behavior of trace elements in dis-
tinct magnetite forming environments. Considering this geo-
chemical behavior of REEs, several studies have exploited
this concept to differentiate between distinct formation pro-
cesses and mineralization systems (Grigsby 1990; Reguir
et al. 2008; Pecoits et al. 2009; Rusk et al. 2010; Dupuis and
Beaudoin 2011; Dare et al. 2012; Angerer et al. 2012; Nadoll
et al. 2012; Dare et al. 2014; Nadoll et al. 2014; Chen et al.
2015; Ovalle et al. 2018; Sun et al. 2019).

The full magnetite data in our study scatter across the
domains for felsic magma (Sawyer 2010), I-type granites
(Dare et al. 2014), and hydrothermal magnetites (e.g., Ray
and Webster 2007; Dupuis and Beaudoin 2011; Nadoll
et al. 2012; Nadoll et al. 2014), but are broadly similar to
Kiruna-type iron ore mineralization where the Ti content is
typically low (100—1000 ppm), although some exceptional
samples show 5000 ppm, and the Al content varies from 200
to 1500 ppm (Nystrom and Henriquez 1994). Moreover, the
low value of Cr,0j; is one of the main geochemical features
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Fig.9 Zircon U-Pb analysis of
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of the Kiruna-type deposits (e.g., < 10 ppm Cr in the Chilean
deposits; Nystrom and Henriquez 1994 and 0.01-0.07 wt.
% Cr,05 in the Abagong deposit in China; Chai et al. 2014).
The exception are samples from the Esfordi deposit which
contain a higher Cr,0; content (0.02-0.06 wt. %). The iden-
tification index of magnetite that was co-crystallizing with
apatite in the Bafq-Saghand belt indicates that the high V
content is also similar to that of Kiruna-type deposits (0.1 to
0.2 wt. %; Nystrom and Henriquez 1994; Toplis and Corgne
2002) and Mn values range from 69.7 to 3175 ppm (Table 3;
Fig. 13a, b), which is once more similar to that in Kiruna-
type deposits (Nystrom and Henriquez 1994). However, the
Mn values (100-1000 ppm) are more similar to those from
a high-temperature magmatic-hydrothermal fluid (c.f., Dare
et al. 2012; Boutroy et al. 2014). Moreover, Mg is enriched
up to six times in some samples relative to typical Kiruna-
type deposits. The uncharacteristic Mg enrichment is, how-
ever, also seen in the iconic El Laco deposit in Chile, where
a five times Mg enrichment and additional Ni-enrichment
(250-100 ppm) have been observed (Nystrom and Henriquez
1994; Tornos et al. 2017). Considering Ternary plots of
Ca+ Al+Mn, Ni/(Cr+Mn) and Ti+ V presented by Beau-
doin et al. (2011), magnetite samples from the Bafq-Saghand
belt fall within the Kiruna-type, porphyry and skarn deposit
regions of the diagram and only a small number of samples
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fall within the IOCG region of the plot (Fig. 13). Specifi-
cally, the samples from Esfordi deposit are commonly placed
within the reference field of Kiruna-type deposits, while
samples of the three other deposits (Chadormalu, Choghart
and Se-Chahun) fall within the Skarn deposit range of the
discrimination plots (Fig. 13a, b). A small number of mag-
matic samples from Esfordi, Se-Chahun and Choghart plot
within the field of porphyry deposits (Fig. 13a, b). Generally,
a linear trend from the Kiruna-type domain towards the por-
phyry and skarn deposit reference fields is observed in this
figure (Fig. 13). This trend is comparable with, and highly
correlated to, other iron oxide-apatite deposits and according
to Huang et al. (2013, 2015), magmatic-hydrothermal mag-
netites are often concentrated in the range of skarn deposits
on this diagram. The linear distribution of our magnetite
samples along a skarn-porphyry-Kiruna-type lineage on a
Ca+ Al+Mn vs Ti+V diagram is, for instance, similar to
in the Los Colorados Kiruna magmatic-hydrothermal iron
deposits in Chilean Iron Belt (Kinpping et al. 2015a; b;
Simon et al. 2018); (Fig. 13a). According to the diagram
introduced by Dare et al. (2014) (Fig. 13h), which separates
magmatic from hydrothermal magnetites, almost all of the
analyzed samples fall within the domain of hydrothermal
magnetites, but close to the field of magmatic magnetites.
In other diagrams (Fig. 13c, g), which separate BIF-related
magnetites, iron—titanium, and iron-apatite deposits from
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Fig. 10 Apatite mineralization in the Bafg-Saghand metallogenic association with magnetite. d Magnetite with large crystals of syn-
belt. a fluorapatite crystals of the Esfordi deposit. b Large apatite genetic apatite of the Chador-Malu deposit. e Apatite and iron oxide
crystals in metasomatised host rock. ¢ Micro-crystalline of apatite in intrusions in field relation with metasomatised country rock domains
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each other (Lohberg and Horndhal 1983), it is obvious  support a magmatic to magmatic high-temperature hydro-
that almost all of the studied samples fall within the iron-  thermal origin for the Bafq-Saghand magnetites under study.
apatite domain and are clearly separated from to the two
other domains. The trace element data from magnetite thus
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Oxygen isotopes

The 8'30 ratios of magnetite crystals were shown to be a
useful tool to identify their mode of formation (Taylor 1967,
Jonsson et al. 2013). A range of 8'%0 of —0.4 to +4.9 %o
is recorded. This range compares to crystallized magnet-
ite from a felsic-intermediate magma at high temperatures
(c.f., Taylor 1967; Jonsson et al. 2013; Troll et al. 2019).
The 8'80 content of most of the magnetite samples varies
between — 0.1 and + 2.2 %o, and an enrichment beyond that
in 180 (+4.7 to+6.8 %o) is recorded in four samples from
brecciated tuff-altered magnetites (Table 5). Results revealed
by analysis related to the enriched samples imply magnet-
ite in isotopic equilibrium with rhyolite magma of ~ 10 %o
(Fig. 14). It is notable that the 8'30 value of altered host
rocks of Kiruna in Sweden ranges from+5 to+ 10 %o, thus
also slightly exceeding the common range of intermediate
igneous rocks (+6 to+ 8 %o) (Taylor, 1968; Jonsson et al.
2013) and consistent with recently reported rhyolite values
of up to 10 %o in some active subduction zone settings (e.g.,
Budd et al. 2017). The §'%0 values of most of the studied
magnetites (— 0.1 to+2.2 %o), however, fall clearly within
the range of regular orthomagmatic to magmatic-hydrother-
mal magnetites similar to, e.g., the reported data from EI
Laco in Chile (Nystrom et al. 2008), Kiruna and Gring-
esberg in Sweden (Nystrom and Henriquez 1994; Jonsson
et al. 2013), and the Zhibo and Chagangnoer deposits in
China (Zhang et al. 2014) (Fig. 14). The 8'80 of the two
samples of Esfordi deposit that range from + 4.0 to +4.8 %o
(Table 5; Fig. 14) then likely indicate magnetite crystalli-
zation from a crustally contaminated intermediate to felsic
magma at a high temperature or subsequent alteration due
to hydrothermal activity (e.g., Jonsson et al. 2013; Budd
et al. 2017). The few §'%0 values below +0.3 %o (n=5),
in turn, indicate a degree of secondary oxidation and low-
temperature hydrothermal alteration (e.g., Troll et al. 2019).

Ages of ore formation

Analysis of crystallization ages of monazites hosted in
silica breccia units of the Choghart deposit yielded ages
between 515 and 529 (+21) Ma, as revealed by EPMA
analysis (Torab and Lehman 2007). Stosch et al. (2011)
studied apatites of the Choghart, Mishdowan, Lake-Siah,
Zarigan and Gazestan areas using Thermal Ionization
Mass Spectrometry (TIMS) and the U-Pb method, deriv-
ing ages of 527-539 Ma as the crystallization age of the
apatites. Analysis of monazitic inclusions of apatites
results in two different age groups of ~440 Ma (Choghart)
and 133 to 140 + 1 Ma (Gazestan). Notably, the age of the
apatites hosting the young monazites is 523 Ma for the
Choghart deposit which is younger than what was obtained
from analyzing the apatites without any inclusions (Stosch

et al. 2011). Hence, it was proposed that some amount of
Pb has likely been lost during monazite mineralization.
Younger dates (140 + 1 and 133 + 1 Ma) were related to the
monazites of the Gazestan area and may link to an event
of sericitic and potassic alteration. The date of the Esfordi
and Chadormalu rhyolitic rocks, using **Ar—*Ar on potas-
sic feldspar samples from potassic alteration in rhyolitic
rocks associated with the magnetite-apatite mineraliza-
tion, was determined at 130.4+ 1.2 and 158.6 +1.3 Ma
(Torab 2008), which supports considerably later post-min-
eralization alteration processes that were possibly caused
by tectonic activity during the Jurassic and Cretaceous
eras (Verdel et al. 2007). It is notable that the apatites
which have inclusions that produce ages that are a little
younger than the different geological events are depleted
in Pb content. Studies conducted by Bonyadi et al. (2011),
for example, reveal the age of Se-Chahun apatites at 510
(+8) Ma. Considering the lack of Pb during generation
of Se-Chahun apatites, the determined age for the sample
from this area may thus be slightly younger than the real
geological age (Bonyadi et al. 2011).

Geodynamic origin of the Bafq-Saghand
metallogenic belt

There are two leading hypothesis regarding the geody-
namic setting of the Bafq-Saghand metallogenic belt: (1)
continental rifting (Berberian and King 1981) and (2) sub-
duction of a continental margin (Ramezani and Tucker
2003).

Geochemistry of igneous rocks and tectonic setting

Regarding the tectonic genesis of igneous rocks, a com-
prehensive study was carried out by Ramezani and Tucker
(2003). Based on geochemical analysis, the rhyolitic
rocks were proposed to be associated with the Cambrian
leucogranites in the region. The Cambrian leucogranite’s
composition is calc-alkaline and considering geochemical
studies of REEs and available age data, the geological age
of these rocks overlaps with the Cambrian granitic complex
(Ramezani and Tucker 2003). These rocks show depletion of
Nb and Ta along with enrichment of Th in chondrite normal-
ized spider diagrams and the genesis of the rhyolitic volcanic
rocks, the Cambrian leucogranites, and the Cambrian grani-
toids of the Bafq-Saghand belt are thus subduction derived
(Ramezani and Tucker 2003).

To cement and further refine these considerations, dis-
crimination diagrams are plotted with our new data, espe-
cially Nb versus Y, Ta versus Yb, Rb versus Ta+ Yb, and
Rb versus Yb+Nb (e.g., Pearce et al. 1984). Two distinct
series of magmatic rocks emerge. The first includes the
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«Fig. 13 Geochemistry of magnetite of the Bafg-Saghand metal-
logenic belt. a and b The studied magnetite samples are plotted as
Ca+ Al+Mn and Ni/(Cr+Mn) vs Ti+V (after Dupuis and Beaudoin
2011). Our data follow a trend for skarn, porphyry and Kiruna-type
deposits. c—g Based on Lohberg and Horndhal (1983) the magnetite
samples plot in the apatite-rich iron ore domain and show no geo-
chemical affinity with BIF or titaniferous iron ores. h The Magnetite
samples plot in the hyrothermal domain on discrimination diagram
(after Dare et al. 2014), but straddle the magmatic field

calc-alkaline intrusive bodies (Fig. 5), such as the Zarigan
granites, Narigan and Chadormalu granites, which seem-
ingly formed within a (calc-alkaline) magmatic arc envi-
ronment (Fig. 15) and these bodies are introduced as part
of the Cambrian granitoid complex, and the Cambrian leu-
cogranite complex (Ramezani and Tucker 2003). The second
group includes the alkaline magmatic bodies (Fig. 5) such as
the Esfordi syenite and Narigan syenite which contrast the
calc-alkaline suite and appear to reflect an intraplate tectonic
setting (Fig. 15).

Integrating geodynamics with radiogenic dating of igneous
rocks

The oldest rocks of the Bafq-Saghand region formed as part
of the Tashk complex, which was deposited through the Late
Neoproterozoic to Early Cambrian (627-533 Ma) (Ramezani
and Tucker 2003). The metamorphosed Boneh-Shurow com-
plex consists of five parts, namely (1) gray—pinkish mylonitic
orthogneiss or protogneiss as protolith to the Boneh-Shurow
gneiss (544 +7 Ma), (2) a mica-schist unit (617-602 Ma),
(3) a garnet-amphibolite unit which likely reflects peak-
metamorphism for the Boneh-Shurow (547.6 +2 Ma), (4)
a quartz-dioritic unit (547.6 +2.5 Ma) and (5) mylonitic
schists (Ramezani and Tucker 2003). The Sar-Kuh complex
is located in the Sar-Kuh mountains in the North-Eastern
part of Zarigan. This complex is divided into two main parts:
(a) one with garnet-schist, staurolite, andalusite, mica-schist,
amphibolite and metamorphosed volcano-sedimentary units.
This part is intruded by several acidic porphyritic bodies. (b)
The second part is composed of calcic-Dolomitic Marbles
(Haghipour 1977), which are proposed to be Pre-Cambrian
or Late Pre-Cambrian in age (Ramezani and Tucker 2003).
The Cambrian Volcano-Sedimentary Unit (Ramezani 1997)
covers the Upper-Proterozoic rocks (particularly the Tashk
unit) and has an Early Cambrian age (528 Ma) and is asso-
ciated with basement rhyodacites of the Duzakh-Dareh
area. This unit includes the iron oxide-apatite deposits of
the Bafq-Saghand metallogenic belt, which were previously
considered as Cambrian or Eocambrian (Huckriede et al.
1962; Stocklin 1968; Haghipour and Pelissier 1977). The
age of the basal rhyodacite (528.2+0.8 Ma) indicates an
Early Cambrian age for the Cambrian Volcano-Sedimentary
Unit and its equivalents (Rizu and Dezu series) in central

Iran. An Early Cambrian age is recorded for the Rizu and
Dezu series which are located in Zebar-Kuh at northeast of
the Bafq-Saghand area (Sahandi et al. 1984). Early Cam-
brian carbonates within this formation unconformably cover
the red sandstones and conglomerates of the lower Cambrian
Lalun/Dahu formation within the Zarigan and Bafq area
(Forster and Jafarzadeh 1994). U-Pb dating analysis of zir-
con related to the Chapedony complex indicates an Eocene
geological age (Ramezani and Tucker 2003). Other studies
proposed that this complex developed during the Tertiary
and is a metamorphosed igneous complex related to Eocene
magmatic activity (Verdel et al. 2007; Kargaranbafghi et al.
2008; Yassaghi and Masoodi 2011; Kargaranbafghi et al.
2012, 2015).

The Cambrian Ariz granitoids (533 + 1 Ma), the Cam-
brian Zarigan, Narigan and Chadormalu leucogranites (525
to 526 + 1 Ma), and the Eocene post-metamorphic bodies are
three magmatic complexes intruded into the Bafq-Saghand
belt (Ramezani and Tucker 2003). It is notable that alkaline
bodies such as the Esfordi syenite (Arash syenite; Valizadeh
and Sharifi 2004) and the Narigan syenite (Afshin syenite)
have intruded into the Cambrian Volcano-Sedimentary Unit
and cover a vast area. These alkaline bodies were previously
reported as gabbro units with the same geological age as
the Cambrian granitoids, but without any radiometric dating
available (Valizadeh and Sharifi 2004). Therefore, samples
from these units were collected and analyzed using the U-Pb
dating method (Table 6). Specifically, we separated zircon
grains (n=22) from the Esfordi syenite in the Northern part
of the Esfordi deposit (Fig. 9a) and from the Narigan syenite
in the Eastern part of Narigan village (Fig. 9b) and analyzed
10 to 12 points on each crystal (Table 6). From the result-
ing U-Pb data, average crystallization ages for zircon were
determined and resulted in a radiometric age of 430+ 9 Ma,
but a concordia diagram of 2°°Pb/>33U vs 2°’Pb/**U yields
an age of 441 +6 Ma, and the two ages overlap within the
given uncertainties (Fig. 9).

Considering the previous research cited above on the geo-
chemistry of magmatic, metamorphic and clastic rocks and
taking into account the whole rock geochemical data and
U-Pb dating analysis of this study, there are three orogenic
events recorded within the Bafq-Saghand region. These
occurred in the Late Neoproterozoic to Early Cambrian, the
Late Triassic, and in the Eocene. In terms of chronology,
degree of metamorphism, calc-alkaline plutonism, rhyolitic-
andesitic volcanism and geological setting of trondhjemite,
the oldest orogenic event of this area occurred around
547-525 Ma. This Late Neoproterozoic—Early Cambrian
orogenic event of the Central Iran zone is related to a mag-
matic arc which extended along the coast of the Gondwana
supercontinent with the Proto-Tethys Ocean (cf. Ramezani
and Tucker 2003). Recent research on the early Cimmerian
orogenic event in the Saghand area discovered late Triassic
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Fig. 14 Magnetite samples 5'30 values from Bafq-Saghand metal-
logenic belt (this study) compared to other iron ore deposits (modi-
fied after Troll et al. 2019). The present magnetite samples plot
dominantly above the+0.9 %o in the field of high-temperature

magmatic bodies, and hence a tectono-magmatic event
which formed within a collisional environment. The Late
Triassic orogenic event (220-213 Ma) is identified based on
intrusions of granitic-tonalitic magmatic bodies (Ramezani
and Tucker 2003). Finally, the distribution of metamorphic
rocks, migmatites and post-kinematic magmatic rocks of
47-44 Ma within the western part of the Saghand area is
indicative of an influence of the Early Alpine Orogeny due
to convergence between the Arabian and Eurasian plates
(Ramezani and Tucker 2003). Currently, residual clasts of
this border, including the Central Iran zone, are covered by
deposits from the Alpine-Himalayan orogenic belt and clo-
sure of the Tethys Ocean occurred after completion of the
Alpine-Himalayan subduction process. Geochemistry and
the calc-alkaline nature as well as the tectonic setting of
the Zarigan, Narigan, Chadormalu and Ariz magmatic bod-
ies confirms the idea of orogenic activities and generation
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ortho-magmatic magnetites (~800-1000 °C). The samples that plot
below +0.9 %o reflect mineralization derived from lower temperature
(hydrothermal) processes

of successive magmatic arcs within the Bafq-Saghand
belt, which itself is located in the central part of the Kash-
mar—Kerman tectonic zone. However, based on age dating
published by Ramezani and Tucker (2003) initial (Late Neo-
proterozoic—Early Cambrian—547-525 Ma) subduction and
formation of a magmatic have occurred along the Gondwana
border and resulted from subduction of parts of the Proto-
Tethys Ocean (Fig. 16).

In contrast, the alkaline magmatic bodies of the Bafq-
Saghand belt such as Esfordi and Narigan show signatures
of generation within a continental rift environment (conti-
nental granites). In comparison with calc-alkaline bodies,
the mentioned alkaline magmatic bodies show a distinc-
tive phase but were previously misinterpreted. Valizadeh
and Sharifi (2004) considered these bodies as subduction
related, but Balaghi et al. (2011) proposed a continental
rifting event in the Late Neoproterozoic—Early Cambrian.
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Fig. 15 Tectonic setting discrimination diagrams (after Pearce et al.
1984) on the basis of Nb versus Y, Ta versus Yb, Rb versus Ta+ Yb,
and Rb versus Yb+Nb. Two distinct series of magmatic rocks
emerge. The first includes the calc-alkaline intrusive bodies, which

Our new crystallization ages of the alkaline bodies (430 +9
and 441 + 6 Ma) (Table 6; Fig. 9) now allow us to confirm
that the Late Neoproterozoic—Early Cambrian magmatic arc
at 525 to 547 Ma, which formed as a result of processes
related to subduction of Proto-Tethys under continental
border of Gondwana, was followed by continental rifting
event between the Ordovician and Silurian within the Bafq-
Saghand area at approximately 430-440 M.
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seemingly formed within a magmatic arc environment. The second
group includes the alkaline magmatic bodies, which contrast the calc-
alkaline suite and appear to reflect an intraplate tectonic setting

Conclusion

We propose that the main iron mineralization event in this
region relates to the older continental arc-type geodynamic
event in the region (Fig. 16a) that is represented by calc-
alkaline subduction-related tonalite, trondhjemite, grano-
dioritic, dioritic and granitic magmatic bodies emplaced
at ca. 525—532 Ma and the arc-related volcanic host
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Fig. 16 Schematic representation of geodynamic episodes recorded in
the Bafg-Saghand area. a Subduction of Proto-Tethys ocean under the
Gondwana supercontinent. Central Iran is a part of the supercontinent
and original mineralization of iron oxide that resulted from calc-alka-
line magmatism at this time (~540 Ma). b subsequent rifting within

rock in the region. These granitoids and arc-type volcanic
rocks show the same geological age as the iron oxide
ores (ca. 510-539 Ma). According to trace element data
of magnetite, apatite and 5'%0 isotope data of magnetite,
we also conclude that magmatic arc-type processes have
played the main role in generation of iron oxide-apatite
mineral deposits. However, during a later geodynamic
episode, intrusion of alkaline syenite and monzosyenite
bodies (421-447 Ma) occurred within a continental rift
setting and primary magmatic mineralization was locally
leached and redeposited through secondary hydrothermal

@ Springer

the Bafq-Saghand area (~440 Ma) resulted in alkaline magmatism
and caused (alkaline) metasomatism that effected the primary miner-
alization in the region and caused local mobilization and reprecipita-
tion of iron ore that originally formed at ca 540 Ma

processes (Fig. 16b). The younger monazites of Choghart
(440 Ma) may have resulted from this hydrothermal
event. The youngest geodynamic event in the region, the
Alpine—Himalayan collision is calc-alkaline in nature but
does not overlap in terms of radiometric ages. We thus
conclude that the formation of low Ti iron-apatite ore
within the Bafq-Saghand metallogenic belt was the result
of high-temperature magmatic and hydrothermal processes
associated with subduction-related calc-alkaline magma-
tism during the subduction of Proto-Tethys Ocean under
the Gondwana supercontinent at 539-510 Ma, but was
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hydrothermally affected by later rifting related alkaline
magmatism at ~ 440 Ma.
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