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Abstract

Large igneous provinces (LIPs) whose magma plumbing systems intersect sedimentary basins are linked to upheavals of Earth’s carbon
and sulfur cycles and thus climate and life history. However, the underlying mechanistic links between these phenomena are elusive. We
address this knowledge gap through short time-scale petrological experiments (1200◦C and 150 MPa) that explore interaction between
basaltic melt and carbonaceous shale (mudstone) using starting materials from the Canadian High Arctic LIP and the Sverdrup Basin in
which it intrudes. Here we show that entrainment of shale xenoliths in basaltic melt causes shale to shatter due to incipient thermal
stress and devolatilization, which accelerates assimilation by increasing reactive surface area. Shale assimilation therefore facilitates
transfer of sediment-derived volatile elements to LIP magma plumbing systems, whereupon carbon dominates the vapor phase while
sulfur is partitioned into sulfide melt droplets. This study reveals that although carbon and sulfur are efficiently mobilized as a
consequence of shale assimilation, sulfides can sequester sulfur—an important climate cooling agent—thus enhancing net emissions
of climate warming greenhouse gases by shale-intersecting LIPs.
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INTRODUCTION
Large igneous provinces (LIPs) are composed of massive emplace-
ments of largely basaltic magma into Earth’s lithosphere and onto
the surface (Bryan & Ernst, 2008; Black et al., 2021). Many LIP
events coincide with environmental change and mass extinctions
(Courtillot & Renne, 2003; Bond & Grasby, 2017; Ernst & Youbi,
2017), but the mechanisms underpinning this correlation are not
fully understood (Bond & Grasby, 2017; Black et al., 2021). The
magnitude of carbon and sulfur released to the atmosphere is
generally accepted as a key control on the severity of environ-
mental impact of a LIP event (Jones et al., 2015). However, there is
active debate concerning whether the release of primary, mantle-
derived volatiles by LIPs is sufficient to cause the global carbon
cycle disruptions, climate change and biotic crises that mark
mass extinctions or whether additional release of thermogenic,
sediment-derived volatiles is required (e.g. Svensen et al., 2004,
2007, 2009; Ganino & Arndt, 2009; Yallup et al., 2013; Callegaro et
al., 2021; Capriolo et al., 2021, 2022; Heimdal et al., 2021).

It is therefore necessary to clarify the mechanisms, dynamics
and efficiency of volatile removal from sedimentary rocks that are

intersected by LIP plumbing systems. However, study of magma–
sediment interaction involving volatile-rich sedimentary rocks
is fraught with obstacles such as poor outcrop preservation

and accessibility. Sill–host rock contacts are often difficult to
access and deeply weathered, sometimes necessitating collection

of drill cores such as for the Siberian LIP (Callegaro et al.,

2021) and the Brazilian portion of Central Atlantic Magmatic
Province (Heimdal et al., 2019). Geochemical modelling of
magma–sediment interaction is also limited, because while
several platforms exist for modelling assimilation of silicate

rocks, thermodynamic data for non-silicate materials such as
carbonates, coal, organic matter, and evaporitic sulfates and

halides are lacking (Heinonen et al., 2021). Efforts to study
magma–sediment interaction through direct experimentation

(using high pressure–temperature devices) has potential for
generating unique mechanistic insights but has thus far largely
been restricted to studies involving magmatic assimilation of

carbonates (Freda et al., 1997, 2008, 2010; Iacono Marziano et al.,
2007, 2008; Deegan et al., 2010, 2016; Mollo et al., 2010; Jolis et
al., 2013; Carter & Dasgupta, 2015, 2016, 2018), although there is
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growing interest in non-carbonate lithologies too (e.g. Iacono–
Marziano et al., 2017). Many of these previous studies utilized
relatively long-duration experiments, with run times ranging
from several hours to days, which yielded equilibrium melt–gas
assemblages that can be difficult to interpret in terms of process.

Short-duration (seconds to minutes) high pressure–temperature
(i.e. ‘kinetic’) experiments that better replicate the onset of
magma–sediment interaction emerged in the early 2010s (Deegan
et al., 2010) and paved the way for close examination of the
rapid transformations that occur when basaltic melt first comes
into contact with sedimentary rock. In this paper, we apply a
similar philosophy to simulate entrainment of carbonaceous
mudstone (hereafter referred to as ‘shale’) xenoliths in basaltic
melt and explore incipient magma–shale interaction at LIPs. The
experiments preserve textural and chemical information that is
largely obliterated in longer duration experiments as well as in
many natural contexts, which rarely freeze-in prograde reaction
paths (Fig. 1a). Magma–shale interaction moreover involves a
sulfur component, which extends its relevance to sulfide ore
formation. It is generally accepted that sulfide formation in
LIP-hosted Ni–Cu–platinum group element (PGE) deposits often
involved incorporation of sedimentary crustal sulfur during
magma emplacement (Lesher, 2019). Since the solubility of sulfide
in basaltic melts is typically low, most of the sulfur needed to
constitute Ni–Cu–PGE ore bodies calls for addition of crustal
sulfur as sulfide ‘xenomelt(s)’, i.e. a foreign melt derived from
crustal rocks or xenoliths (Lesher, 2017, 2019). The crustal origin
of sulfur is supported by isotopic and geochemical data, but
uncertainty remains surrounding how sulfide xenomelts form
and are transported in ore-forming systems (Hayes et al., 2015;
Lesher, 2017, 2019). These are questions that short-duration
interaction experiments can also potentially clarify.

FIELD AREA, STARTING MATERIALS AND
METHODS
Here we employ the Cretaceous High Arctic LIP (HALIP) as a
case study because its mafic sill province, representing the frozen
remains of the conduit system formerly supplying flood basalts
to the surface, is spectacularly preserved and exposed in the
Canadian Arctic (Jowitt et al., 2014; Evenchick et al., 2015; Deegan
et al., 2018; Bédard et al., 2021a, 2021b). Much of the Canadian
portion of the HALIP was emplaced at ca. 120 Ma into the Sver-
drup Basin, a sedimentary depocenter filled with up to 13 km of
siliciclastic, evaporitic and carbonaceous strata of Carboniferous
to Paleogene age (Embry & Beauchamp, 2019). HALIP sills that
invaded Sverdrup Basin sedimentary rocks collectively influenced
basin-scale thermal evolution and development of regional oil
and gas resources (Jones et al., 2007; Goodarzi et al., 2019) and
possibly also sulfide ore formation (Jowitt et al., 2014; Saumur et
al., 2016). The Middle Triassic Murray Harbour Formation forms
part of the Sverdrup Basin fill and is dominated by black shale and
siltstone, with subordinate calcareous and phosphatic interbeds.
This unit is rich in Type II kerogen and is considered to be the
primary source rock for hydrocarbon discoveries in the Sverdrup
Basin (Brooks et al., 1992; Kondla et al., 2015).

We utilized natural HALIP magmatic rock and Murray Har-
bour Formation shale as the experimental starting materials.
The experimental conditions and compositions of the starting
materials are provided in the Supporting Data File. Details of
the experimental method and analytical techniques applied to
the experimental products are provided in full in the Supporting
Information. To summarize, the magmatic starting material is a

pristine, non-cumulate mafic rock sample from a ca. 30 m thick
sill with 6.6 wt % MgO and 0.15 wt % S. The shale is a finely clastic
mudstone collected from a site over 60 m perpendicular distance
away from any observable sill contacts and contains 4.7 wt %
total organic carbon and 0.5 wt % total S. The shale is principally
composed of quartz (56 wt %), calcite (24 wt %), biotite (9 wt %),
dolomite (4 wt %) and pyrite (1 wt %) and has a loss on ignition
value of 21.6 wt %, indicating that roughly one fifth of its mass
comprises volatile compounds including sulfur from pyrite and
organic matter plus inorganic and organic carbon.

The magmatic rock was converted to glass, both an anhydrous
and a mildly hydrated aliquot, pulverized in an agate mill and
loaded into platinum capsules (ca. 25 to 35 mg of powdered
glass per experiment) along with a solid fragment of shale (ca.
4 to 5 mg per experiment). Each capsule was positioned in a 19–
25 mm NaCl-crushable MgO-borosilicate glass assembly employ-
ing a graphite furnace and was then pressurized to 150 MPa in
a low-P calibrated non-end loaded piston cylinder device (see
Masotta et al., 2012). The assemblies were then heated to 1200◦C
at a rate of 100◦C per minute and held at the set point temper-
ature for durations of 0 s, 300 s and 600 s while being continu-
ously monitored for any P–T fluctuations. The experimental P–
T conditions are considered appropriate for injection of HALIP
tholeiites at or slightly above their liquidus (1100 to 1200◦C) at ca.
5 km depth in the Sverdrup Basin (see Bédard et al., 2021a). The
experiments were terminated by shutting down the power source
whereafter they were isobarically quenched at a rate of ca. 100◦C
per second in the first 5 seconds (to the glass transition) and ca.
33◦C per second thereafter. Fast, isobaric quenching is important
to preserve textures and glass (≈melt) that formed in situ within
the time window of xenolith dissolution and melting (Fig. 1a).
After quenching, the capsules were retrieved, cast in epoxy, pol-
ished and inspected using secondary electron microscopy (SEM).
Quantitative analysis of major element oxides and sulfur was
subsequently performed utilizing electron probe microanalysis
(EPMA) while volatile species were determined using confocal
Raman microspectroscopy (see Supporting Information for ana-
lytical details).

EXPERIMENTAL RESULTS
An extended description of the experimental products is pro-
vided in the Supporting Information, and the compositions of the
glasses and sulfides in the experimental products are provided in
the Supporting Data File. An overview of the textures of the exper-
imental products is presented in Fig. 1 as a series of SEM mosaic
images and a summary of the compositions of the experimental
glasses, sulfides and vapor bubbles are provided in Figs 2 and 3.
In brief, the experiments document features of incipient magma–
shale interaction, including the following processes:

(i) Dissolution of shale into the host melt, manifest as dise-
quilibrium textures and crustally contaminated, ‘modified’
melts (Figs 1 and 2).

(ii) Formation of modified melts that are initially restricted to
patches within the shale fragment but eventually form a
boundary layer surrounding shale. Calcium is enriched (rel-
ative to the starting HALIP basalt) in modified glass in all
experiments while silica, potassium and sulfur are often
enriched too (Fig. 2).

(iii) Shattering and degassing of shale and formation of abun-
dant vapor bubbles containing C (disordered graphite), CO
and CO2 (Fig. 3).
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Fig. 1. (a) Relative timescales for melting host rocks and xenoliths by magmatic intrusions (modified after Robertson et al., 2015). This study targets
the timeframe of cm- to m-scale xenolith melting in order to capture evidence of interaction processes that are only rarely preserved in nature. (b) to
(g) Backscattered electron (BSE) mosaic images of experimental run products. Intense degassing is evidenced by abundant small vesicles that
permeate the run products (especially in the 0 s runs). Sulfides are generally found at magma–shale interfaces. Runs held for 600 s show a more
advanced stage of shale dissolution into the host melt. Scale bars are 1 mm.

(iv) Formation of sulfide mineralizations (≈sulfide xenomelts) at
magma–shale interfaces (Figs 2 and 3).

The experiments therefore reveal that contaminated melts and
carbon volatiles are generated rapidly as a consequence of shale
assimilation but that sulfides effectively sequester sulfur, a cli-
mate cooling agent, thus enhancing net emissions of greenhouse
gases by LIPs that intersect shale-bearing sedimentary basins (as
discussed below).

DISCUSSION
Magma–sediment interaction in microcosm
Our experiments have replicated magma–shale interaction in
microcosm, i.e. the experiments encapsulate in miniature the
characteristics of a much larger system. Earlier, similarly designed
experiments showed that magma–carbonate interaction results
in a low-viscosity, Ca-rich compositional boundary layer at the
reaction site and a voluminous C–O–H (carbon–oxygen–hydrogen)
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Fig. 2. (a) Sketch of experiment SH-7G. To the right are EPMA glass data for SiO2, CaO, K2O and S, respectively. (b) Sketch of experiment SH-20G-H. To
the right are EPMA SiO2 and CaO maps. Small black squares on the maps represent EPMA glass analysis sites and numeric values are in weight %.
(c) EPMA Fe, S, Cu and Ni maps for sulfides at the melt-shale interface (white box on SiO2 map). Numeric values are in weight %. Abbreviations: Qz,
quartz; Rxn, reaction; SCSS, sulfur concentration at sulfide saturation; SM, starting material. All EPMA glass data are normalized to 100% and the glass
and sulfide data are reported in the Supporting Data File.

vapor phase (e.g. Deegan et al., 2010). We find evidence of this pro-
cess in our experiments, but shale assimilation is complicated by
the fact that shale contains silicate minerals and organic matter
in addition to carbonate. Previous experimental work involving

siliceous shale and/or metapelite showed that siliceous partial
melts formed at ca. 700 to 800◦C at pressure equivalent to ca.
200 MPa (Wyllie & Tuttle, 1961; Erdmann et al., 2007). Recent
shale heating experiments at 200 MPa have also shown that
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Fig. 3. (a) BSE mosaic image of experiment SH-17G-H showing the locations of Raman analysis sites. (b) BSE image of the shale-melt interface showing
the texture of partly dissolved shale, sulfides along the shale-melt boundary and abundant bubbles in the glass. This is a surface image so the bubbles
that are visible were opened during sample polishing. Raman analyses were conducted on unopened bubbles beneath the sample surface. (c) Raman
spectra for the analysis sites are shown to the right, with C, CO, CO2, O2 and N2 bands identified (note that O2 and N2 are likely derived from air
introduced during capsule loading, but O2 may also derive from decomposition of oxidized carbon species by laser heating; see Supporting
Information for further details).

C–O–H–S fluids are generated at temperatures ≤700◦C and that
silicate melt is produced from ca. 800◦C (Virtanen et al., 2021).
None of these previous studies simulated interaction between
shale and basaltic melt, but there are nevertheless some broad
similarities to our work. For instance, two of our experiments
contain a separated high-silica glass phase (Fig. 1b,c), which we
suggest is the product of quartz breakdown at <1200◦C during
experiment heat-up. These segregated high-silica glass domains
are not present in the mildly hydrated experiments, which sug-
gest that melt mixing was more efficient at low temperatures
(during heat-up) when there was water added to the basaltic
melt.

Importantly, we observed a portion of Ca-enriched, composi-
tionally modified (crustally contaminated) glass near the reaction
site in all of our magma–shale interaction experiments (Fig. 2a,b).
The at times extremely high CaO content of this glass (up to
45 wt %) indicates that the carbonate components of the shale
dissolved rapidly into the host melt. In many experiments, the
compositional boundary layers are also enriched in silica, potas-
sium and sulfur from dissolution of quartz, micas and pyrite
(Fig. 2a,b). These silica-rich contaminated melts are particularly
significant because in natural systems they would potentially
crystallize zircon, which would enable U–Pb geochronology of
basaltic magmas injected into shale (Gaynor et al., 2022).

In addition to demonstrating local contamination phenom-
ena, the experiments provide compelling evidence for transfer of
carbon volatiles from shale to melt. Evidence of a vapor phase
is preserved in the experiments as bubbles that coalesce and
migrate within minutes. Our limited number of experiments does
not allow us to quantify how vesicle volume changes as a function
of reaction time, but the shale appears to undergo a significant
volume change, with increasingly smaller fragments visible over
time (Fig. 1). The volatile mix generated is comprised dominantly
of C (disordered graphite), CO and CO2 as revealed by spectro-
scopic analysis of small (ca. 20 μm diameter) subsurface bubbles
in a zero-time experiment (Fig. 3). Methane and water may be
expected too (cf. Capriolo et al., 2021), but further analyses would
be required to verify their presence. Sulfur likewise cannot be

ruled out as a vapor phase although it appears to be largely
sequestered into sulfides that dot the melt-shale interface.

Thermal stresses and concentration of volatiles produced
along cleavage planes in shale would trigger a localized volume
change, which could lead to fragmentation of shale and open
up new surface area for reaction, triggering a short-lived ‘run-
away’ effect with respect to volatile expulsion. Since the host
melt is virtually incapable of storing dissolved CO2 at 150 MPa (the
solubility of CO2 in basaltic magma at 150 MPa is ca. 0.07 wt %;
Newman & Lowenstern, 2002), the system would quickly become
fluid oversaturated and most of the carbon in the system would be
expelled as a free vapor or fluid phase capable of hydrofracturing
roof and wall rocks. Notably, thermodynamic models predict that
assimilation of as little as 0.6 wt % organic matter will cause
a doubling of the total volatile load of a magma and produce
CO-dominated gases (Iacono-Marziano et al., 2012). We have now
verified these predictions via direct analysis of bubbles (Fig. 3) and
provide unique empirical evidence for CO gas formation during
magma–shale interaction.

Ground truthing the experimental results
There are several natural examples that mirror our experimental
results, which we briefly summarize here: (1) shale xenoliths
reported from Nuussuaq (Greenland) and the Duluth Complex
(USA) show evidence for extensive reaction and element exchange
with their host melt (Pedersen & Larsen, 2006; Samalens et al.,
2017); (2) studies of mafic sills injected into shale in Skye (Scot-
land) show that shale close to sill contacts displays abundant
vesicles, partial melt textures with glassy streaks enriched in
sulfur, silica and potassium, Fe–S mineralizations and evidence
for sulfur loss (Lindgren & Parnell, 2006; Yallup et al., 2013); and
(3) sill–shale contacts in the Canadian HALIP possess sulfides
with textures similar to those reported here (see Supporting
Information). These natural cases underscore both the utility of
our experimental approach in understanding contact phenomena
and the dynamic, rapidly evolving nature of magma–sediment
interaction.
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Fig. 4. (a) Illustration of a LIP plumbing system intersecting a sedimentary basin. Sill injection into shale generates sediment-derived volatiles (fluids
and/or vapor). If these volatiles enter the atmosphere and/or ocean through a vent complex or eruption, they can trigger climate warming and ocean
anoxia. (b) Generalized model of sill–host rock interaction with a close-up of incipient magma–shale interaction as revealed by experiments.
Magma–shale interaction causes formation of carbon volatiles, crustally contaminated melts and sulfide xenomelts. Note that contact aureoles reach
a maximum temperature (max. aureole T) of ∼650 ◦C depending on multiple factors including sill temperature, ambient temperature, sill thickness
and host rock type and are a source of volatiles not directly studied in our experiments. Sill liquidus and solidus curves are estimated based on HALIP
petrological models (Bédard et al., 2021a). Abbreviations: devol., devolatilization; Liq, liquidus; Sol, solidus; S. Basin, sedimentary basin; T, temperature.

WIDER IMPLICATIONS
Formation of sulfide xenomelts
Thermodynamic models have shown that as little as 0.1 wt %

magmatic assimilation of organic matter (CH) will cause oxygen

fugacity (fO2) to decrease by more than two log-units (Iacono–

Marziano et al., 2012). Magmatic assimilation of shale there-

fore facilitates a reducing melt environment while also trans-

ferring sulfur from shale to the host melt. There may, however,

be local and/or transient variations in fO2, as suggested by the

different volatile mixtures in the Raman analysis sites in our

experiments (Fig. 3). The sulfur concentration at sulfide satu-

ration (SCSS) for the magmatic starting materials (anhydrous

and mildly hydrated basalt at 1200◦C and 150 MPa) was cal-

culated at ca. 0.1 wt % (cf. Fortin et al., 2015). These low sol-

ubilities indicate that the mafic host melt is ineffective as a
carrier of sulfur at equilibrium conditions. Since only a minor
amount of sulfur is soluble in the host melt, the excess sulfur
would form a dense, immiscible sulfide ‘xenomelt’ (Lesher, 2017,
2019). Some of the modified glasses in our experiments con-
tain sulfur exceeding the SCSS (Fig. 2a), which is not surprising
since the experiments clearly did not attain equilibrium. We

therefore propose that crustally contaminated melts generated
during incipient magma–shale interaction can temporarily carry
excess sulfur, which may manifest as a fine suspension of sulfide
droplets (i.e. sulfide xenomelts; Fig. 2c and Fig. 4). For the most
part, the experiments are visualized here in two dimensions using
SEM imaging of the surface. However, inspection of an experi-
ment with extended focus under reflected light revealed a ca.
100 μm wide zone around shale replete with minute (<5 μm)

sulfides beneath the sample surface (see Supporting Informa-
tion). This finding supports the notion that the compositional
boundary layers in our experiments are a mixture of crustally

contaminated silicate melt and fine disseminations of sulfide
xenomelts. Our experiments therefore shed light on the origin of
sulfide xenomelts in LIP systems that intersect sulfur-bearing sed-
imentary rocks. Moreover, the experiments support the idea that
sulfur-charged contaminated melts can form rapidly, especially
in fault-guided conduit systems where magmatic and tectonic
brecciation would be common (Hayes et al., 2015) and where
they could be forced upward as a slug of sulfur-enriched magma.
Since sulfide xenomelts can scavenge metals from mafic mag-
mas, they may eventually lead to the formation of economic ore
deposits.
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Climate impact

Our experiments highlight that magma–shale interaction in the
shallow parts of magma plumbing systems beneath LIPs is an
effective means to rapidly mobilize carbon volatiles (Fig. 4). Sev-
eral major LIPs are characterized by pulsed emplacement of sills
into sedimentary basins (e.g. Callegaro et al., 2021; Bédard et al.,
2021a, 2021b), which would lead to repeated episodes of magma–
sediment interaction and pulsed volatile release throughout the
basin. These volatiles could then enter the sub-aerial or sub-
aqueous environment via faults and/or hydrothermal vent com-
plexes or breccia pipes, the latter of which are known from the
Karoo (Svensen et al., 2007) and Siberian LIP (Svensen et al., 2018)
and potentially the Barents Sea region of the HALIP too (Polteau
et al., 2016).

Climate warming induced by excess carbon outgassing at LIPs
would cause thermal stress in ecosystems and potentially trigger
ocean anoxic events (OAEs), a proximal killer in some mass extinc-
tion scenarios (Bond & Grasby, 2017). The HALIP was a protracted
event spanning more than 40 Myr with a major pulse of continen-

tal basaltic magmatism between 135–120 Ma and another at ca.
105–90 Ma (Bédard et al., 2021a, 2021b). These pulses overlap with
OAE1a at 120 Ma and OAE2 at 95 Ma. OAE1a was accompanied
by sea-surface warming of as much as 8◦C (Ando et al., 2008),
while OAE2 is considered to be one of the most intense OAEs
(Naber et al., 2020). Remarkably, the magnitude of sea-surface
warming associated with OAE1a parallels that associated with the
Paleocene-Eocene thermal maximum and the Jurassic Toarcian
OAE, consistent with the idea that all of these environmental
crises share a causal mechanism related to massive release of
carbon to the atmosphere–ocean system (Ando et al., 2008).

The driving force for OAE1a and OAE2 is suspected to be
volcanic CO2 outgassing, but the source(s) remain uncertain. Pos-
sibilities include dissociation of methane clathrates or volcanism
from the Ontong-Java LIP, the Caribbean LIP or the HALIP (Méhay
et al., 2009; Midtkandal et al., 2016; Naber et al., 2020). The Barents
Sea sill complex, part of the wider HALIP, has been speculated as
a source for potentially 20 000 Gt of thermogenic carbon (equiv-
alent to 175 trillion oil barrels) via thermal metamorphism of
up to 400 000 km3 of organic-rich sediments due to repeated
sill injection (Polteau et al., 2016). This scenario assumes that a
maximum of 2 wt % of the carbon in thermal aureoles around
sills was expelled (Polteau et al., 2016), which would equate
to ca. 4 wt % original TOC assuming that no more than 50%
original kerogen is converted to hydrocarbon. Employing a more
conservative figure of 1 wt % carbon discharged (=2 wt % original
TOC), we arrive at 10 000 Gt thermogenic carbon released from the
Barents Sea volcanic basin. Important to note is that these calcu-

lations do not consider inorganic carbon that could be effectively
mobilized by heating of carbonates. Unfortunately, estimates of
carbon release by HALIP intrusions are fraught with uncertainties
regarding quantification of parameters such as thermal aureole

thicknesses and stratigraphic variability in TOC. However, there
are striking parallels between the estimated thermogenic carbon
release for the Barents Sea (Polteau et al., 2016) and for the Karoo
LIP (Heimdal et al., 2021).

In this study, we employed on-land HALIP sills as a case study
and provided experimental constraints that help clarify the mech-
anisms and rates of magma–shale interaction (summarized in
Fig. 4). If we consider devolatilization of a cube of our starting

material shale with 500 m side length, ca. 16 Mt of C could
be produced. Given the short timescale of shale devolatilization
observed here, and that magma volumes of LIPs are on the order

of 105 to 107 km3 (Black et al., 2021), it is wholly conceivable that
several thousand Gt of C could be generated through repeated
episodes of magma–shale interaction proximal to sills in a shallow
magma plumbing system. This would moreover be in addition
to decarbonation in the distal, lower-temperature parts of meta-
morphic aureoles (processes that are not directly addressed by
our experiments). We therefore suggest that carbon release by
magma–sediment interaction at various scales during emplace-
ment of the Canadian Arctic portion of the HALIP could have
been similar to estimates for thermogenic carbon release from the
Barents Sea (up to 20 000 Gt C; Polteau et al., 2016) or the Karoo (ca.
20 500 Gt C; Heimdal et al., 2021), making the HALIP a strong con-
tender as the causal mechanism for OAE1a and OAE2. However,
detailed thermal modelling of the impact of widespread HALIP
sill intrusion on Sverdrup Basin sediments would be required to
test this hypothesis. A surprising corollary of our work is that
entrapment of sulfur in sulfide xenomelts might act to lessen the
amount of sulfur released to the atmosphere, which in turn could
boost the warming effects of carbon by producing fewer climate-
cooling sulfurous aerosols. This may account for the general
observation (cf. Bond & Grasby, 2017) of LIPs being more strongly
associated with climate warming, rather than cooling.
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